Loading…

Using dynamic community detection to identify trends in user-generated content

In this paper, we present a new solution for trend detection in user-generated content, and more particularly Web 2.0 social networks. Whereas some propositions have been published in this domain recently, we have chosen a new approach based on network analysis. We first create an evolving network o...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2012-12, Vol.2 (4), p.361-371
Main Authors: Cazabet, Rémy, Takeda, Hideaki, Hamasaki, Masahiro, Amblard, Frédéric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a new solution for trend detection in user-generated content, and more particularly Web 2.0 social networks. Whereas some propositions have been published in this domain recently, we have chosen a new approach based on network analysis. We first create an evolving network of terms, which is an abstraction of the complete network, and then run a dynamic community detection algorithm on this evolving network. In order to be able to detect not only short, bursting events, but also more persistent topics, we test our solution on a social network for which we have information about all published contents for a period of more than 2 years: the Japanese network Nico Nico Douga. After presenting our solution in detail, we present the results on this dataset, notably a statistical analysis of communities’ sizes and durations, examples of detected communities, and a typology of the different kinds of trends detected. Finally, we discuss the advantages and disadvantages of this method, as well as its possible applications.
ISSN:1869-5450
1869-5469
DOI:10.1007/s13278-012-0074-8