Loading…
Thermal investigation of nanospheres and nanowhiskers of CuInS2
The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The co...
Saved in:
Published in: | European physical journal plus 2021-03, Vol.136 (3), p.320, Article 320 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3 |
container_end_page | |
container_issue | 3 |
container_start_page | 320 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Giri, Ranjan Kr Chaki, Sunil H. Khimani, Ankurkumar J. Patel, Sefali R. Deshpande, Milind P. |
description | The nanospheres and nanowhiskers of ternary CuInS
2
are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min
−1
. The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details. |
doi_str_mv | 10.1140/epjp/s13360-021-01241-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919619752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919619752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gwueo5l8bk4ixY9CwYP1HLK7Sbu1za5Jq_jvTbuC3pzLzDDzvjM8CF0CuQbg5Mb16_4mAWOSYEIBE6AcMJygEQVNsOCcn_6pz9EkpTXJwTVwzUfodrFycWs3RRs-XNq1S7tru1B0vgg2dKnPU5cKG5pj_7lq05uL6TCf7mfhhV6gM283yU1-8hi9Ptwvpk94_vw4m97Ncc3Kcoe1ViVveENrLZ2WgjpoNKuo8EKxRlZcSA-V56XwylGulKt0w4jgUlpdq4qN0dXg28fufZ8_NetuH0M-aagGLUErQfOWGrbq2KUUnTd9bLc2fhkg5gDMHICZAZjJwMwRmIGsLAdlyoqwdPHX_z_pN1DHcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919619752</pqid></control><display><type>article</type><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><source>Springer Link</source><creator>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</creator><creatorcontrib>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</creatorcontrib><description>The nanospheres and nanowhiskers of ternary CuInS
2
are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min
−1
. The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01241-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Applied and Technical Physics ; Atomic ; Chemicals ; Complex Systems ; Condensed Matter Physics ; Decomposition ; Differential thermal analysis ; Enthalpy ; Entropy of activation ; Gibbs free energy ; Laboratories ; Mathematical and Computational Physics ; Molecular ; Morphology ; Nanoparticles ; Nanospheres ; Optical and Plasma Physics ; Parameters ; Phase transitions ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Semiconductors ; Surfactants ; Synthesis ; Theoretical ; Thermal analysis ; Transmission electron microscopy ; Unit cell ; X-ray diffraction ; X-rays</subject><ispartof>European physical journal plus, 2021-03, Vol.136 (3), p.320, Article 320</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</citedby><cites>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</cites><orcidid>0000-0002-9702-1566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Giri, Ranjan Kr</creatorcontrib><creatorcontrib>Chaki, Sunil H.</creatorcontrib><creatorcontrib>Khimani, Ankurkumar J.</creatorcontrib><creatorcontrib>Patel, Sefali R.</creatorcontrib><creatorcontrib>Deshpande, Milind P.</creatorcontrib><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The nanospheres and nanowhiskers of ternary CuInS
2
are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min
−1
. The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</description><subject>Activation energy</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Chemicals</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decomposition</subject><subject>Differential thermal analysis</subject><subject>Enthalpy</subject><subject>Entropy of activation</subject><subject>Gibbs free energy</subject><subject>Laboratories</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Semiconductors</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Theoretical</subject><subject>Thermal analysis</subject><subject>Transmission electron microscopy</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGp_gwueo5l8bk4ixY9CwYP1HLK7Sbu1za5Jq_jvTbuC3pzLzDDzvjM8CF0CuQbg5Mb16_4mAWOSYEIBE6AcMJygEQVNsOCcn_6pz9EkpTXJwTVwzUfodrFycWs3RRs-XNq1S7tru1B0vgg2dKnPU5cKG5pj_7lq05uL6TCf7mfhhV6gM283yU1-8hi9Ptwvpk94_vw4m97Ncc3Kcoe1ViVveENrLZ2WgjpoNKuo8EKxRlZcSA-V56XwylGulKt0w4jgUlpdq4qN0dXg28fufZ8_NetuH0M-aagGLUErQfOWGrbq2KUUnTd9bLc2fhkg5gDMHICZAZjJwMwRmIGsLAdlyoqwdPHX_z_pN1DHcLQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Giri, Ranjan Kr</creator><creator>Chaki, Sunil H.</creator><creator>Khimani, Ankurkumar J.</creator><creator>Patel, Sefali R.</creator><creator>Deshpande, Milind P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9702-1566</orcidid></search><sort><creationdate>20210301</creationdate><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><author>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Chemicals</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decomposition</topic><topic>Differential thermal analysis</topic><topic>Enthalpy</topic><topic>Entropy of activation</topic><topic>Gibbs free energy</topic><topic>Laboratories</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Semiconductors</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Theoretical</topic><topic>Thermal analysis</topic><topic>Transmission electron microscopy</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Ranjan Kr</creatorcontrib><creatorcontrib>Chaki, Sunil H.</creatorcontrib><creatorcontrib>Khimani, Ankurkumar J.</creatorcontrib><creatorcontrib>Patel, Sefali R.</creatorcontrib><creatorcontrib>Deshpande, Milind P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Ranjan Kr</au><au>Chaki, Sunil H.</au><au>Khimani, Ankurkumar J.</au><au>Patel, Sefali R.</au><au>Deshpande, Milind P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal investigation of nanospheres and nanowhiskers of CuInS2</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>136</volume><issue>3</issue><spage>320</spage><pages>320-</pages><artnum>320</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The nanospheres and nanowhiskers of ternary CuInS
2
are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min
−1
. The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01241-1</doi><orcidid>https://orcid.org/0000-0002-9702-1566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-03, Vol.136 (3), p.320, Article 320 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919619752 |
source | Springer Link |
subjects | Activation energy Applied and Technical Physics Atomic Chemicals Complex Systems Condensed Matter Physics Decomposition Differential thermal analysis Enthalpy Entropy of activation Gibbs free energy Laboratories Mathematical and Computational Physics Molecular Morphology Nanoparticles Nanospheres Optical and Plasma Physics Parameters Phase transitions Physics Physics and Astronomy Radiation Regular Article Semiconductors Surfactants Synthesis Theoretical Thermal analysis Transmission electron microscopy Unit cell X-ray diffraction X-rays |
title | Thermal investigation of nanospheres and nanowhiskers of CuInS2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20investigation%20of%20nanospheres%20and%20nanowhiskers%20of%20CuInS2&rft.jtitle=European%20physical%20journal%20plus&rft.au=Giri,%20Ranjan%20Kr&rft.date=2021-03-01&rft.volume=136&rft.issue=3&rft.spage=320&rft.pages=320-&rft.artnum=320&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01241-1&rft_dat=%3Cproquest_cross%3E2919619752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919619752&rft_id=info:pmid/&rfr_iscdi=true |