Loading…

Thermal investigation of nanospheres and nanowhiskers of CuInS2

The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The co...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2021-03, Vol.136 (3), p.320, Article 320
Main Authors: Giri, Ranjan Kr, Chaki, Sunil H., Khimani, Ankurkumar J., Patel, Sefali R., Deshpande, Milind P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3
cites cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3
container_end_page
container_issue 3
container_start_page 320
container_title European physical journal plus
container_volume 136
creator Giri, Ranjan Kr
Chaki, Sunil H.
Khimani, Ankurkumar J.
Patel, Sefali R.
Deshpande, Milind P.
description The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min −1 . The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.
doi_str_mv 10.1140/epjp/s13360-021-01241-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919619752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919619752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gwueo5l8bk4ixY9CwYP1HLK7Sbu1za5Jq_jvTbuC3pzLzDDzvjM8CF0CuQbg5Mb16_4mAWOSYEIBE6AcMJygEQVNsOCcn_6pz9EkpTXJwTVwzUfodrFycWs3RRs-XNq1S7tru1B0vgg2dKnPU5cKG5pj_7lq05uL6TCf7mfhhV6gM283yU1-8hi9Ptwvpk94_vw4m97Ncc3Kcoe1ViVveENrLZ2WgjpoNKuo8EKxRlZcSA-V56XwylGulKt0w4jgUlpdq4qN0dXg28fufZ8_NetuH0M-aagGLUErQfOWGrbq2KUUnTd9bLc2fhkg5gDMHICZAZjJwMwRmIGsLAdlyoqwdPHX_z_pN1DHcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919619752</pqid></control><display><type>article</type><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><source>Springer Link</source><creator>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</creator><creatorcontrib>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</creatorcontrib><description>The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min −1 . The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01241-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Applied and Technical Physics ; Atomic ; Chemicals ; Complex Systems ; Condensed Matter Physics ; Decomposition ; Differential thermal analysis ; Enthalpy ; Entropy of activation ; Gibbs free energy ; Laboratories ; Mathematical and Computational Physics ; Molecular ; Morphology ; Nanoparticles ; Nanospheres ; Optical and Plasma Physics ; Parameters ; Phase transitions ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Semiconductors ; Surfactants ; Synthesis ; Theoretical ; Thermal analysis ; Transmission electron microscopy ; Unit cell ; X-ray diffraction ; X-rays</subject><ispartof>European physical journal plus, 2021-03, Vol.136 (3), p.320, Article 320</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</citedby><cites>FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</cites><orcidid>0000-0002-9702-1566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Giri, Ranjan Kr</creatorcontrib><creatorcontrib>Chaki, Sunil H.</creatorcontrib><creatorcontrib>Khimani, Ankurkumar J.</creatorcontrib><creatorcontrib>Patel, Sefali R.</creatorcontrib><creatorcontrib>Deshpande, Milind P.</creatorcontrib><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min −1 . The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</description><subject>Activation energy</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Chemicals</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decomposition</subject><subject>Differential thermal analysis</subject><subject>Enthalpy</subject><subject>Entropy of activation</subject><subject>Gibbs free energy</subject><subject>Laboratories</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Semiconductors</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Theoretical</subject><subject>Thermal analysis</subject><subject>Transmission electron microscopy</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGp_gwueo5l8bk4ixY9CwYP1HLK7Sbu1za5Jq_jvTbuC3pzLzDDzvjM8CF0CuQbg5Mb16_4mAWOSYEIBE6AcMJygEQVNsOCcn_6pz9EkpTXJwTVwzUfodrFycWs3RRs-XNq1S7tru1B0vgg2dKnPU5cKG5pj_7lq05uL6TCf7mfhhV6gM283yU1-8hi9Ptwvpk94_vw4m97Ncc3Kcoe1ViVveENrLZ2WgjpoNKuo8EKxRlZcSA-V56XwylGulKt0w4jgUlpdq4qN0dXg28fufZ8_NetuH0M-aagGLUErQfOWGrbq2KUUnTd9bLc2fhkg5gDMHICZAZjJwMwRmIGsLAdlyoqwdPHX_z_pN1DHcLQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Giri, Ranjan Kr</creator><creator>Chaki, Sunil H.</creator><creator>Khimani, Ankurkumar J.</creator><creator>Patel, Sefali R.</creator><creator>Deshpande, Milind P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9702-1566</orcidid></search><sort><creationdate>20210301</creationdate><title>Thermal investigation of nanospheres and nanowhiskers of CuInS2</title><author>Giri, Ranjan Kr ; Chaki, Sunil H. ; Khimani, Ankurkumar J. ; Patel, Sefali R. ; Deshpande, Milind P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Chemicals</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decomposition</topic><topic>Differential thermal analysis</topic><topic>Enthalpy</topic><topic>Entropy of activation</topic><topic>Gibbs free energy</topic><topic>Laboratories</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Semiconductors</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Theoretical</topic><topic>Thermal analysis</topic><topic>Transmission electron microscopy</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Ranjan Kr</creatorcontrib><creatorcontrib>Chaki, Sunil H.</creatorcontrib><creatorcontrib>Khimani, Ankurkumar J.</creatorcontrib><creatorcontrib>Patel, Sefali R.</creatorcontrib><creatorcontrib>Deshpande, Milind P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Ranjan Kr</au><au>Chaki, Sunil H.</au><au>Khimani, Ankurkumar J.</au><au>Patel, Sefali R.</au><au>Deshpande, Milind P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal investigation of nanospheres and nanowhiskers of CuInS2</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>136</volume><issue>3</issue><spage>320</spage><pages>320-</pages><artnum>320</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The nanospheres and nanowhiskers of ternary CuInS 2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min −1 . The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01241-1</doi><orcidid>https://orcid.org/0000-0002-9702-1566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-03, Vol.136 (3), p.320, Article 320
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919619752
source Springer Link
subjects Activation energy
Applied and Technical Physics
Atomic
Chemicals
Complex Systems
Condensed Matter Physics
Decomposition
Differential thermal analysis
Enthalpy
Entropy of activation
Gibbs free energy
Laboratories
Mathematical and Computational Physics
Molecular
Morphology
Nanoparticles
Nanospheres
Optical and Plasma Physics
Parameters
Phase transitions
Physics
Physics and Astronomy
Radiation
Regular Article
Semiconductors
Surfactants
Synthesis
Theoretical
Thermal analysis
Transmission electron microscopy
Unit cell
X-ray diffraction
X-rays
title Thermal investigation of nanospheres and nanowhiskers of CuInS2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20investigation%20of%20nanospheres%20and%20nanowhiskers%20of%20CuInS2&rft.jtitle=European%20physical%20journal%20plus&rft.au=Giri,%20Ranjan%20Kr&rft.date=2021-03-01&rft.volume=136&rft.issue=3&rft.spage=320&rft.pages=320-&rft.artnum=320&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01241-1&rft_dat=%3Cproquest_cross%3E2919619752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-99784d4d2c96e9652e1d93b25f573d6b456f1bf485f7e2477eb9d305466a9c7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919619752&rft_id=info:pmid/&rfr_iscdi=true