Loading…
A diagnosis model for detection and classification of diabetic retinopathy using deep learning
Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectivel...
Saved in:
Published in: | Network modeling and analysis in health informatics and bioinformatics (Wien) 2023-10, Vol.12 (1), p.37, Article 37 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 37 |
container_title | Network modeling and analysis in health informatics and bioinformatics (Wien) |
container_volume | 12 |
creator | Syed, Saba Raoof M A, Saleem Durai |
description | Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly. |
doi_str_mv | 10.1007/s13721-023-00432-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919712283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919712283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8pk2yLMUXCG50a0iTm5oyTcZkuui_N-0IuvIS7s0N5zuBg9A1JbeUEHFXKBeMNoTxhpCWs4afoQmjijWLhSDnf-6XaFbKltSS9dD5BH0ssQtmE1MJBe-Sgw77lLGDAewQUsQmOmw7U0rwwZrTU_JHZg1DsDjXHlNvhs8D3pcQNxWFHndgcqzbFbrwpisw-5lT9P5w_7Z6al5eH59Xy5fGcqqGhoJXnjtPjXBywVsnwHFpuDLAgZO5Ey1VUnipjAdlCRfruSUtWUtb19byKboZffucvvZQBr1N-xzrl5opqgRlTPKqYqPK5lRKBq_7HHYmHzQl-hilHqPUNUp9ilIfIT5CpYrjBvKv9T_UNy8qd4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919712283</pqid></control><display><type>article</type><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><source>Springer Nature</source><creator>Syed, Saba Raoof ; M A, Saleem Durai</creator><creatorcontrib>Syed, Saba Raoof ; M A, Saleem Durai</creatorcontrib><description>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</description><identifier>ISSN: 2192-6670</identifier><identifier>ISSN: 2192-6662</identifier><identifier>EISSN: 2192-6670</identifier><identifier>DOI: 10.1007/s13721-023-00432-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Applications of Graph Theory and Complex Networks ; Artificial neural networks ; Bioinformatics ; Blood vessels ; Classification ; Computational Biology/Bioinformatics ; Computer Science ; Datasets ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetic retinopathy ; Glucose ; Health Informatics ; Insulin ; Machine learning ; Methods ; Microvasculature ; Neural networks ; Optimization techniques ; Original Article ; Retinopathy ; Segmentation</subject><ispartof>Network modeling and analysis in health informatics and bioinformatics (Wien), 2023-10, Vol.12 (1), p.37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</citedby><cites>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</cites><orcidid>0000-0001-8666-8156 ; 0000-0003-2873-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syed, Saba Raoof</creatorcontrib><creatorcontrib>M A, Saleem Durai</creatorcontrib><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><title>Network modeling and analysis in health informatics and bioinformatics (Wien)</title><addtitle>Netw Model Anal Health Inform Bioinforma</addtitle><description>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</description><subject>Algorithms</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Blood vessels</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetic retinopathy</subject><subject>Glucose</subject><subject>Health Informatics</subject><subject>Insulin</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microvasculature</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Original Article</subject><subject>Retinopathy</subject><subject>Segmentation</subject><issn>2192-6670</issn><issn>2192-6662</issn><issn>2192-6670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8pk2yLMUXCG50a0iTm5oyTcZkuui_N-0IuvIS7s0N5zuBg9A1JbeUEHFXKBeMNoTxhpCWs4afoQmjijWLhSDnf-6XaFbKltSS9dD5BH0ssQtmE1MJBe-Sgw77lLGDAewQUsQmOmw7U0rwwZrTU_JHZg1DsDjXHlNvhs8D3pcQNxWFHndgcqzbFbrwpisw-5lT9P5w_7Z6al5eH59Xy5fGcqqGhoJXnjtPjXBywVsnwHFpuDLAgZO5Ey1VUnipjAdlCRfruSUtWUtb19byKboZffucvvZQBr1N-xzrl5opqgRlTPKqYqPK5lRKBq_7HHYmHzQl-hilHqPUNUp9ilIfIT5CpYrjBvKv9T_UNy8qd4Y</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Syed, Saba Raoof</creator><creator>M A, Saleem Durai</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8666-8156</orcidid><orcidid>https://orcid.org/0000-0003-2873-6602</orcidid></search><sort><creationdate>20231013</creationdate><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><author>Syed, Saba Raoof ; M A, Saleem Durai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Blood vessels</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetic retinopathy</topic><topic>Glucose</topic><topic>Health Informatics</topic><topic>Insulin</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microvasculature</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Original Article</topic><topic>Retinopathy</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syed, Saba Raoof</creatorcontrib><creatorcontrib>M A, Saleem Durai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syed, Saba Raoof</au><au>M A, Saleem Durai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</atitle><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle><stitle>Netw Model Anal Health Inform Bioinforma</stitle><date>2023-10-13</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>37</spage><pages>37-</pages><artnum>37</artnum><issn>2192-6670</issn><issn>2192-6662</issn><eissn>2192-6670</eissn><abstract>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13721-023-00432-3</doi><orcidid>https://orcid.org/0000-0001-8666-8156</orcidid><orcidid>https://orcid.org/0000-0003-2873-6602</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6670 |
ispartof | Network modeling and analysis in health informatics and bioinformatics (Wien), 2023-10, Vol.12 (1), p.37, Article 37 |
issn | 2192-6670 2192-6662 2192-6670 |
language | eng |
recordid | cdi_proquest_journals_2919712283 |
source | Springer Nature |
subjects | Algorithms Applications of Graph Theory and Complex Networks Artificial neural networks Bioinformatics Blood vessels Classification Computational Biology/Bioinformatics Computer Science Datasets Deep learning Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetic retinopathy Glucose Health Informatics Insulin Machine learning Methods Microvasculature Neural networks Optimization techniques Original Article Retinopathy Segmentation |
title | A diagnosis model for detection and classification of diabetic retinopathy using deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diagnosis%20model%20for%20detection%20and%20classification%20of%20diabetic%20retinopathy%20using%20deep%20learning&rft.jtitle=Network%20modeling%20and%20analysis%20in%20health%20informatics%20and%20bioinformatics%20(Wien)&rft.au=Syed,%20Saba%20Raoof&rft.date=2023-10-13&rft.volume=12&rft.issue=1&rft.spage=37&rft.pages=37-&rft.artnum=37&rft.issn=2192-6670&rft.eissn=2192-6670&rft_id=info:doi/10.1007/s13721-023-00432-3&rft_dat=%3Cproquest_cross%3E2919712283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919712283&rft_id=info:pmid/&rfr_iscdi=true |