Loading…

A diagnosis model for detection and classification of diabetic retinopathy using deep learning

Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectivel...

Full description

Saved in:
Bibliographic Details
Published in:Network modeling and analysis in health informatics and bioinformatics (Wien) 2023-10, Vol.12 (1), p.37, Article 37
Main Authors: Syed, Saba Raoof, M A, Saleem Durai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3
cites cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3
container_end_page
container_issue 1
container_start_page 37
container_title Network modeling and analysis in health informatics and bioinformatics (Wien)
container_volume 12
creator Syed, Saba Raoof
M A, Saleem Durai
description Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.
doi_str_mv 10.1007/s13721-023-00432-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919712283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919712283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8pk2yLMUXCG50a0iTm5oyTcZkuui_N-0IuvIS7s0N5zuBg9A1JbeUEHFXKBeMNoTxhpCWs4afoQmjijWLhSDnf-6XaFbKltSS9dD5BH0ssQtmE1MJBe-Sgw77lLGDAewQUsQmOmw7U0rwwZrTU_JHZg1DsDjXHlNvhs8D3pcQNxWFHndgcqzbFbrwpisw-5lT9P5w_7Z6al5eH59Xy5fGcqqGhoJXnjtPjXBywVsnwHFpuDLAgZO5Ey1VUnipjAdlCRfruSUtWUtb19byKboZffucvvZQBr1N-xzrl5opqgRlTPKqYqPK5lRKBq_7HHYmHzQl-hilHqPUNUp9ilIfIT5CpYrjBvKv9T_UNy8qd4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919712283</pqid></control><display><type>article</type><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><source>Springer Nature</source><creator>Syed, Saba Raoof ; M A, Saleem Durai</creator><creatorcontrib>Syed, Saba Raoof ; M A, Saleem Durai</creatorcontrib><description>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</description><identifier>ISSN: 2192-6670</identifier><identifier>ISSN: 2192-6662</identifier><identifier>EISSN: 2192-6670</identifier><identifier>DOI: 10.1007/s13721-023-00432-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Applications of Graph Theory and Complex Networks ; Artificial neural networks ; Bioinformatics ; Blood vessels ; Classification ; Computational Biology/Bioinformatics ; Computer Science ; Datasets ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetic retinopathy ; Glucose ; Health Informatics ; Insulin ; Machine learning ; Methods ; Microvasculature ; Neural networks ; Optimization techniques ; Original Article ; Retinopathy ; Segmentation</subject><ispartof>Network modeling and analysis in health informatics and bioinformatics (Wien), 2023-10, Vol.12 (1), p.37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</citedby><cites>FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</cites><orcidid>0000-0001-8666-8156 ; 0000-0003-2873-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syed, Saba Raoof</creatorcontrib><creatorcontrib>M A, Saleem Durai</creatorcontrib><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><title>Network modeling and analysis in health informatics and bioinformatics (Wien)</title><addtitle>Netw Model Anal Health Inform Bioinforma</addtitle><description>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</description><subject>Algorithms</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Blood vessels</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetic retinopathy</subject><subject>Glucose</subject><subject>Health Informatics</subject><subject>Insulin</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microvasculature</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Original Article</subject><subject>Retinopathy</subject><subject>Segmentation</subject><issn>2192-6670</issn><issn>2192-6662</issn><issn>2192-6670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8pk2yLMUXCG50a0iTm5oyTcZkuui_N-0IuvIS7s0N5zuBg9A1JbeUEHFXKBeMNoTxhpCWs4afoQmjijWLhSDnf-6XaFbKltSS9dD5BH0ssQtmE1MJBe-Sgw77lLGDAewQUsQmOmw7U0rwwZrTU_JHZg1DsDjXHlNvhs8D3pcQNxWFHndgcqzbFbrwpisw-5lT9P5w_7Z6al5eH59Xy5fGcqqGhoJXnjtPjXBywVsnwHFpuDLAgZO5Ey1VUnipjAdlCRfruSUtWUtb19byKboZffucvvZQBr1N-xzrl5opqgRlTPKqYqPK5lRKBq_7HHYmHzQl-hilHqPUNUp9ilIfIT5CpYrjBvKv9T_UNy8qd4Y</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Syed, Saba Raoof</creator><creator>M A, Saleem Durai</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8666-8156</orcidid><orcidid>https://orcid.org/0000-0003-2873-6602</orcidid></search><sort><creationdate>20231013</creationdate><title>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</title><author>Syed, Saba Raoof ; M A, Saleem Durai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Blood vessels</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetic retinopathy</topic><topic>Glucose</topic><topic>Health Informatics</topic><topic>Insulin</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microvasculature</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Original Article</topic><topic>Retinopathy</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syed, Saba Raoof</creatorcontrib><creatorcontrib>M A, Saleem Durai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syed, Saba Raoof</au><au>M A, Saleem Durai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diagnosis model for detection and classification of diabetic retinopathy using deep learning</atitle><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle><stitle>Netw Model Anal Health Inform Bioinforma</stitle><date>2023-10-13</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>37</spage><pages>37-</pages><artnum>37</artnum><issn>2192-6670</issn><issn>2192-6662</issn><eissn>2192-6670</eissn><abstract>Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13721-023-00432-3</doi><orcidid>https://orcid.org/0000-0001-8666-8156</orcidid><orcidid>https://orcid.org/0000-0003-2873-6602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-6670
ispartof Network modeling and analysis in health informatics and bioinformatics (Wien), 2023-10, Vol.12 (1), p.37, Article 37
issn 2192-6670
2192-6662
2192-6670
language eng
recordid cdi_proquest_journals_2919712283
source Springer Nature
subjects Algorithms
Applications of Graph Theory and Complex Networks
Artificial neural networks
Bioinformatics
Blood vessels
Classification
Computational Biology/Bioinformatics
Computer Science
Datasets
Deep learning
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetic retinopathy
Glucose
Health Informatics
Insulin
Machine learning
Methods
Microvasculature
Neural networks
Optimization techniques
Original Article
Retinopathy
Segmentation
title A diagnosis model for detection and classification of diabetic retinopathy using deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diagnosis%20model%20for%20detection%20and%20classification%20of%20diabetic%20retinopathy%20using%20deep%20learning&rft.jtitle=Network%20modeling%20and%20analysis%20in%20health%20informatics%20and%20bioinformatics%20(Wien)&rft.au=Syed,%20Saba%20Raoof&rft.date=2023-10-13&rft.volume=12&rft.issue=1&rft.spage=37&rft.pages=37-&rft.artnum=37&rft.issn=2192-6670&rft.eissn=2192-6670&rft_id=info:doi/10.1007/s13721-023-00432-3&rft_dat=%3Cproquest_cross%3E2919712283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1ef9f3df1a7d8634d7ed38a39ae3e305d741987f89afe9c037b5c040b8ce9c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919712283&rft_id=info:pmid/&rfr_iscdi=true