Loading…

Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)

The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s therm...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2023-02, Vol.138 (1), p.107, Article 107
Main Authors: Khan, Zeeshan, Zuhra, Samina, Islam, Saeed, Raja, Muhammad Asif Zahoor, Ali, Aatif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63
cites cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63
container_end_page
container_issue 1
container_start_page 107
container_title European physical journal plus
container_volume 138
creator Khan, Zeeshan
Zuhra, Samina
Islam, Saeed
Raja, Muhammad Asif Zahoor
Ali, Aatif
description The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.
doi_str_mv 10.1140/epjp/s13360-022-03583-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919725711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919725711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</originalsourceid><addsrcrecordid>eNqFUUtOHDEQbaEggQhnoCQ2YdHBdrt_7AgJCdIAG1hbxi7PeOixO3a3OmTFHbLiOFyFk8QzEynZxZsqqd5Pfll2RMlHSjk5xX7Zn0ZaFBXJCWM5KcqmyKedbJ_RluQl5_zdP_tedhjjkqTHW8pbvp-9XnuNnXVzkE5DtKuxk4P1DryBa_ljwq4DJ5033Wg1mM5PEayDYYHQB4zoFK6hMx_QDT83Ip9lUE9vz78ufVCLBdoVBjBpx3gGg59k0CDB4QSy74OXagHJ7tPo3dz64Pzb80uE1ToVjHETLAzWWGVlSoJj2Ixh8uERPpzf3Jy8z3aN7CIe_pkH2f3ll7uLb_ns9uvVxfksV6ziQ65pwxrWtlWNSBAfHjRTmtZGlUpxjmVdMdlUpa7SN8q6KdOdUU4bXRmKjaqKg-x4q5tCfx8xDmLpx-CSpWAtbWtW1pQmVL1FqeBjDGhEH-xKhidBiVhXJtaViW1lInmJTWViSsxmy4yJ4eYY_ur_j_obFY2jvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919725711</pqid></control><display><type>article</type><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><source>Springer Nature</source><creator>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</creator><creatorcontrib>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</creatorcontrib><description>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03583-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Applied and Technical Physics ; Artificial intelligence ; Artificial neural networks ; Atomic ; Back propagation networks ; Boundary layers ; Chemical reactions ; Complex Systems ; Condensed Matter Physics ; Cooling ; Curve fitting ; Datasets ; Deep learning ; Differential equations ; Engineering ; Error analysis ; Finite difference method ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluidics ; Heat exchangers ; Investigations ; Machine learning ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Momentum ; Nanofluids ; Nanoparticles ; Neural networks ; Nonlinear differential equations ; Nuclear energy ; Nuclear power plants ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Simulation ; Statistical analysis ; Theoretical ; Thermal radiation ; Thermophoresis</subject><ispartof>European physical journal plus, 2023-02, Vol.138 (1), p.107, Article 107</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</citedby><cites>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</cites><orcidid>0000-0003-0792-337X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Zeeshan</creatorcontrib><creatorcontrib>Zuhra, Samina</creatorcontrib><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Ali, Aatif</creatorcontrib><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Atomic</subject><subject>Back propagation networks</subject><subject>Boundary layers</subject><subject>Chemical reactions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Curve fitting</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluidics</subject><subject>Heat exchangers</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Momentum</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><subject>Thermophoresis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUUtOHDEQbaEggQhnoCQ2YdHBdrt_7AgJCdIAG1hbxi7PeOixO3a3OmTFHbLiOFyFk8QzEynZxZsqqd5Pfll2RMlHSjk5xX7Zn0ZaFBXJCWM5KcqmyKedbJ_RluQl5_zdP_tedhjjkqTHW8pbvp-9XnuNnXVzkE5DtKuxk4P1DryBa_ljwq4DJ5033Wg1mM5PEayDYYHQB4zoFK6hMx_QDT83Ip9lUE9vz78ufVCLBdoVBjBpx3gGg59k0CDB4QSy74OXagHJ7tPo3dz64Pzb80uE1ToVjHETLAzWWGVlSoJj2Ixh8uERPpzf3Jy8z3aN7CIe_pkH2f3ll7uLb_ns9uvVxfksV6ziQ65pwxrWtlWNSBAfHjRTmtZGlUpxjmVdMdlUpa7SN8q6KdOdUU4bXRmKjaqKg-x4q5tCfx8xDmLpx-CSpWAtbWtW1pQmVL1FqeBjDGhEH-xKhidBiVhXJtaViW1lInmJTWViSsxmy4yJ4eYY_ur_j_obFY2jvA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Khan, Zeeshan</creator><creator>Zuhra, Samina</creator><creator>Islam, Saeed</creator><creator>Raja, Muhammad Asif Zahoor</creator><creator>Ali, Aatif</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0792-337X</orcidid></search><sort><creationdate>20230201</creationdate><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><author>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Atomic</topic><topic>Back propagation networks</topic><topic>Boundary layers</topic><topic>Chemical reactions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Curve fitting</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluidics</topic><topic>Heat exchangers</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Momentum</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Zeeshan</creatorcontrib><creatorcontrib>Zuhra, Samina</creatorcontrib><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Ali, Aatif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Zeeshan</au><au>Zuhra, Samina</au><au>Islam, Saeed</au><au>Raja, Muhammad Asif Zahoor</au><au>Ali, Aatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>107</spage><pages>107-</pages><artnum>107</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03583-w</doi><orcidid>https://orcid.org/0000-0003-0792-337X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-02, Vol.138 (1), p.107, Article 107
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919725711
source Springer Nature
subjects Accuracy
Algorithms
Applied and Technical Physics
Artificial intelligence
Artificial neural networks
Atomic
Back propagation networks
Boundary layers
Chemical reactions
Complex Systems
Condensed Matter Physics
Cooling
Curve fitting
Datasets
Deep learning
Differential equations
Engineering
Error analysis
Finite difference method
Fluid dynamics
Fluid flow
Fluid mechanics
Fluidics
Heat exchangers
Investigations
Machine learning
Mathematical and Computational Physics
Mathematical models
Molecular
Momentum
Nanofluids
Nanoparticles
Neural networks
Nonlinear differential equations
Nuclear energy
Nuclear power plants
Optical and Plasma Physics
Partial differential equations
Physics
Physics and Astronomy
Radiation
Regular Article
Simulation
Statistical analysis
Theoretical
Thermal radiation
Thermophoresis
title Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20Maxwell%20nanofluid%20flows%20in%20the%20presence%20of%20Lorentz%20and%20Darcy%E2%80%93Forchheimer%20forces:%20toward%20a%20new%20approach%20on%20Buongiorno%E2%80%99s%20model%20using%20artificial%20neural%20network%20(ANN)&rft.jtitle=European%20physical%20journal%20plus&rft.au=Khan,%20Zeeshan&rft.date=2023-02-01&rft.volume=138&rft.issue=1&rft.spage=107&rft.pages=107-&rft.artnum=107&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03583-w&rft_dat=%3Cproquest_cross%3E2919725711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919725711&rft_id=info:pmid/&rfr_iscdi=true