Loading…
Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)
The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s therm...
Saved in:
Published in: | European physical journal plus 2023-02, Vol.138 (1), p.107, Article 107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63 |
container_end_page | |
container_issue | 1 |
container_start_page | 107 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Khan, Zeeshan Zuhra, Samina Islam, Saeed Raja, Muhammad Asif Zahoor Ali, Aatif |
description | The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation. |
doi_str_mv | 10.1140/epjp/s13360-022-03583-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919725711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919725711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</originalsourceid><addsrcrecordid>eNqFUUtOHDEQbaEggQhnoCQ2YdHBdrt_7AgJCdIAG1hbxi7PeOixO3a3OmTFHbLiOFyFk8QzEynZxZsqqd5Pfll2RMlHSjk5xX7Zn0ZaFBXJCWM5KcqmyKedbJ_RluQl5_zdP_tedhjjkqTHW8pbvp-9XnuNnXVzkE5DtKuxk4P1DryBa_ljwq4DJ5033Wg1mM5PEayDYYHQB4zoFK6hMx_QDT83Ip9lUE9vz78ufVCLBdoVBjBpx3gGg59k0CDB4QSy74OXagHJ7tPo3dz64Pzb80uE1ToVjHETLAzWWGVlSoJj2Ixh8uERPpzf3Jy8z3aN7CIe_pkH2f3ll7uLb_ns9uvVxfksV6ziQ65pwxrWtlWNSBAfHjRTmtZGlUpxjmVdMdlUpa7SN8q6KdOdUU4bXRmKjaqKg-x4q5tCfx8xDmLpx-CSpWAtbWtW1pQmVL1FqeBjDGhEH-xKhidBiVhXJtaViW1lInmJTWViSsxmy4yJ4eYY_ur_j_obFY2jvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919725711</pqid></control><display><type>article</type><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><source>Springer Nature</source><creator>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</creator><creatorcontrib>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</creatorcontrib><description>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03583-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Applied and Technical Physics ; Artificial intelligence ; Artificial neural networks ; Atomic ; Back propagation networks ; Boundary layers ; Chemical reactions ; Complex Systems ; Condensed Matter Physics ; Cooling ; Curve fitting ; Datasets ; Deep learning ; Differential equations ; Engineering ; Error analysis ; Finite difference method ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluidics ; Heat exchangers ; Investigations ; Machine learning ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Momentum ; Nanofluids ; Nanoparticles ; Neural networks ; Nonlinear differential equations ; Nuclear energy ; Nuclear power plants ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Radiation ; Regular Article ; Simulation ; Statistical analysis ; Theoretical ; Thermal radiation ; Thermophoresis</subject><ispartof>European physical journal plus, 2023-02, Vol.138 (1), p.107, Article 107</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</citedby><cites>FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</cites><orcidid>0000-0003-0792-337X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Zeeshan</creatorcontrib><creatorcontrib>Zuhra, Samina</creatorcontrib><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Ali, Aatif</creatorcontrib><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Atomic</subject><subject>Back propagation networks</subject><subject>Boundary layers</subject><subject>Chemical reactions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Curve fitting</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluidics</subject><subject>Heat exchangers</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Momentum</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Regular Article</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><subject>Thermophoresis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUUtOHDEQbaEggQhnoCQ2YdHBdrt_7AgJCdIAG1hbxi7PeOixO3a3OmTFHbLiOFyFk8QzEynZxZsqqd5Pfll2RMlHSjk5xX7Zn0ZaFBXJCWM5KcqmyKedbJ_RluQl5_zdP_tedhjjkqTHW8pbvp-9XnuNnXVzkE5DtKuxk4P1DryBa_ljwq4DJ5033Wg1mM5PEayDYYHQB4zoFK6hMx_QDT83Ip9lUE9vz78ufVCLBdoVBjBpx3gGg59k0CDB4QSy74OXagHJ7tPo3dz64Pzb80uE1ToVjHETLAzWWGVlSoJj2Ixh8uERPpzf3Jy8z3aN7CIe_pkH2f3ll7uLb_ns9uvVxfksV6ziQ65pwxrWtlWNSBAfHjRTmtZGlUpxjmVdMdlUpa7SN8q6KdOdUU4bXRmKjaqKg-x4q5tCfx8xDmLpx-CSpWAtbWtW1pQmVL1FqeBjDGhEH-xKhidBiVhXJtaViW1lInmJTWViSsxmy4yJ4eYY_ur_j_obFY2jvA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Khan, Zeeshan</creator><creator>Zuhra, Samina</creator><creator>Islam, Saeed</creator><creator>Raja, Muhammad Asif Zahoor</creator><creator>Ali, Aatif</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0792-337X</orcidid></search><sort><creationdate>20230201</creationdate><title>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</title><author>Khan, Zeeshan ; Zuhra, Samina ; Islam, Saeed ; Raja, Muhammad Asif Zahoor ; Ali, Aatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Atomic</topic><topic>Back propagation networks</topic><topic>Boundary layers</topic><topic>Chemical reactions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Curve fitting</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluidics</topic><topic>Heat exchangers</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Momentum</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Regular Article</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Zeeshan</creatorcontrib><creatorcontrib>Zuhra, Samina</creatorcontrib><creatorcontrib>Islam, Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Ali, Aatif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Zeeshan</au><au>Zuhra, Samina</au><au>Islam, Saeed</au><au>Raja, Muhammad Asif Zahoor</au><au>Ali, Aatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>107</spage><pages>107-</pages><artnum>107</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The current work explores the intelligent computational strength of neural networks based on the Levenberg–Marquardt backpropagation (LMBP-NNs) neural networks technique for simulation of Maxwell nanofluid flow past a linear stretchable surface model. The fluid flow is incorporated Rosseland’s thermal radiation, and Darcy’s Forchheimer law. The Maxwell nanofluid model gives more relaxing time to momentum boundary layer. For the nanofluid phenomena that concentrate on thermophoresis and Brownian motion, Buongiorno’s model is used. The procedure transforms partial differential equations arising in nanofluidics systems with an appropriate degree of similarity into nonlinear differential equation systems. For the nonlinear nanofluid problem with accuracy having order 4–5, the (FDM) finite difference method (Lobatto IIIA) is implemented via various selections of collocation points. The strong aspect of Lobatto IIIA is its ability to handle very nonlinear couple differential equations in an easy manner. The precise results of (FDM) are used to build the reference datasets for LMBP-NNs technique for the various factors of fluid problem. The design scheme for various factors of fluid problem carries out a series of operations based on training, testing, and authentication on reference dataset. The accuracy of LMBP-NNs is checked through statistical based neural network tools such that mean square error, regression plot, curve fitting graphs, and error histogram. Furthermore, the investigation of flow model parameters for momentum, energy, and concentration profiles is described via visual representation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03583-w</doi><orcidid>https://orcid.org/0000-0003-0792-337X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-02, Vol.138 (1), p.107, Article 107 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919725711 |
source | Springer Nature |
subjects | Accuracy Algorithms Applied and Technical Physics Artificial intelligence Artificial neural networks Atomic Back propagation networks Boundary layers Chemical reactions Complex Systems Condensed Matter Physics Cooling Curve fitting Datasets Deep learning Differential equations Engineering Error analysis Finite difference method Fluid dynamics Fluid flow Fluid mechanics Fluidics Heat exchangers Investigations Machine learning Mathematical and Computational Physics Mathematical models Molecular Momentum Nanofluids Nanoparticles Neural networks Nonlinear differential equations Nuclear energy Nuclear power plants Optical and Plasma Physics Partial differential equations Physics Physics and Astronomy Radiation Regular Article Simulation Statistical analysis Theoretical Thermal radiation Thermophoresis |
title | Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20Maxwell%20nanofluid%20flows%20in%20the%20presence%20of%20Lorentz%20and%20Darcy%E2%80%93Forchheimer%20forces:%20toward%20a%20new%20approach%20on%20Buongiorno%E2%80%99s%20model%20using%20artificial%20neural%20network%20(ANN)&rft.jtitle=European%20physical%20journal%20plus&rft.au=Khan,%20Zeeshan&rft.date=2023-02-01&rft.volume=138&rft.issue=1&rft.spage=107&rft.pages=107-&rft.artnum=107&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03583-w&rft_dat=%3Cproquest_cross%3E2919725711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-d182829967ee0eebbd2cd17fc5cc44e5762a865d6022a785bd221418d6f1e8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919725711&rft_id=info:pmid/&rfr_iscdi=true |