Loading…

Benefitting from High-κ Spacer Engineering in Balistic Triple-Gate Junctionless FinFET- a Full Quantum Study

In this paper, a numerically comprehensive investigation have been performed in order to propose a high-κ spacer triple-gate junctionless FinFET (HKS TG JL FinFET) in three dimensional (3D) simulation domain. In the proposed structure, a high dielectric insulator called as HfO 2 is used on the both...

Full description

Saved in:
Bibliographic Details
Published in:SILICON 2020-09, Vol.12 (9), p.2221-2228
Main Authors: Bousari, Nazanin Baghban, Anvarifard, Mohammad K., Haji-Nasiri, Saeed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a numerically comprehensive investigation have been performed in order to propose a high-κ spacer triple-gate junctionless FinFET (HKS TG JL FinFET) in three dimensional (3D) simulation domain. In the proposed structure, a high dielectric insulator called as HfO 2 is used on the both sides of the source and the drain regions as the spacers. The spacer located on the drain side, extends into the channel region and the other spacer is only on the channel region. Mode Space Non-Equilibrium Green’s Function method has been utilized in order to analyze the nanoscale proposed structure. The modification of the electric field along the channel region is introduced as the main reason for the improvement of the electrical characteristics. Also, the explored results about role of different thicknesses of the proposed structure spacers on the electrical performance are discussed in the last section. The explored results have revealed that the leakage current is successfully reduced about 20% and also I on /I off experiences a 30% increase for the proposed structure. Also, the short channel effects in terms of subthreshod slope and drain induced barrier lowering (DIBL) is improved about 11.59% and 50% respectively. It is stated that the HKS JL TG FinFET can be a good candidate for future high speed applications.
ISSN:1876-990X
1876-9918
DOI:10.1007/s12633-019-00318-y