Loading…

Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium

. In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equa...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2018-01, Vol.133 (1), p.28, Article 28
Main Authors: Parand, Kourosh, Latifi, Sobhan, Delkhosh, Mehdi, Moayeri, Mohammad M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3
cites cdi_FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3
container_end_page
container_issue 1
container_start_page 28
container_title European physical journal plus
container_volume 133
creator Parand, Kourosh
Latifi, Sobhan
Delkhosh, Mehdi
Moayeri, Mohammad M.
description . In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [ 0 , ∞ ) . Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y ( 0 ) , is obtained as - 1 . 191790649719421734122828603800159364 for η = 0 . 5 . Comparing to the best result obtained so far, it is accurate up to 36 decimal places.
doi_str_mv 10.1140/epjp/i2018-11859-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919732991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919732991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQXUTBov6Ap4Dn1UySbZujFK1KwYuew5idblN2kzXZFRT8d2Mr6Mk5zAyP994MryjOgV8CKH5F_ba_coLDvASYV7qsDoqJAM3LSil1-Gc_Ls5S2vJcSoPSalJ8LslTxNZ9UM1W2ET0jUPPHtCGF8eWOKbEbGjbYHFwwbOOhk2o2TpElkL75nzDRp8GwvqduRSGDcUOW9ZgYsMmhrHZMGSdszGUHn1gfchgyja1G7vT4miNbaKzn3lSPN_ePC3uytXj8n5xvSqtBD2U1ZwIpnINSNpOtdKVnCpUYiYlIueWVMYFzx0JLBcIMyBZcTF_IRK1lSfFxd63j-F1pDSYbRijzyeN0KBnUmgNmSX2rPxsSpHWpo-uw_hugJvvpM130maXtNklbaoskntRymTfUPy1_kf1Bd0zhZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919732991</pqid></control><display><type>article</type><title>Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium</title><source>Springer Nature</source><creator>Parand, Kourosh ; Latifi, Sobhan ; Delkhosh, Mehdi ; Moayeri, Mohammad M.</creator><creatorcontrib>Parand, Kourosh ; Latifi, Sobhan ; Delkhosh, Mehdi ; Moayeri, Mohammad M.</creatorcontrib><description>. In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [ 0 , ∞ ) . Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y ( 0 ) , is obtained as - 1 . 191790649719421734122828603800159364 for η = 0 . 5 . Comparing to the best result obtained so far, it is accurate up to 36 decimal places.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2018-11859-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algebra ; Applied and Technical Physics ; Approximation ; Atomic ; Boundary conditions ; Collocation methods ; Complex Systems ; Condensed Matter Physics ; Decomposition ; Differential equations ; Engineering ; Investigations ; Mathematical and Computational Physics ; Methods ; Molecular ; Numerical analysis ; Optical and Plasma Physics ; Ordinary differential equations ; Partial differential equations ; Physics ; Physics and Astronomy ; Porous materials ; Porous media ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2018-01, Vol.133 (1), p.28, Article 28</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3</citedby><cites>FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Parand, Kourosh</creatorcontrib><creatorcontrib>Latifi, Sobhan</creatorcontrib><creatorcontrib>Delkhosh, Mehdi</creatorcontrib><creatorcontrib>Moayeri, Mohammad M.</creatorcontrib><title>Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [ 0 , ∞ ) . Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y ( 0 ) , is obtained as - 1 . 191790649719421734122828603800159364 for η = 0 . 5 . Comparing to the best result obtained so far, it is accurate up to 36 decimal places.</description><subject>Accuracy</subject><subject>Algebra</subject><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Collocation methods</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decomposition</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Investigations</subject><subject>Mathematical and Computational Physics</subject><subject>Methods</subject><subject>Molecular</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQXUTBov6Ap4Dn1UySbZujFK1KwYuew5idblN2kzXZFRT8d2Mr6Mk5zAyP994MryjOgV8CKH5F_ba_coLDvASYV7qsDoqJAM3LSil1-Gc_Ls5S2vJcSoPSalJ8LslTxNZ9UM1W2ET0jUPPHtCGF8eWOKbEbGjbYHFwwbOOhk2o2TpElkL75nzDRp8GwvqduRSGDcUOW9ZgYsMmhrHZMGSdszGUHn1gfchgyja1G7vT4miNbaKzn3lSPN_ePC3uytXj8n5xvSqtBD2U1ZwIpnINSNpOtdKVnCpUYiYlIueWVMYFzx0JLBcIMyBZcTF_IRK1lSfFxd63j-F1pDSYbRijzyeN0KBnUmgNmSX2rPxsSpHWpo-uw_hugJvvpM130maXtNklbaoskntRymTfUPy1_kf1Bd0zhZA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Parand, Kourosh</creator><creator>Latifi, Sobhan</creator><creator>Delkhosh, Mehdi</creator><creator>Moayeri, Mohammad M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180101</creationdate><title>Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium</title><author>Parand, Kourosh ; Latifi, Sobhan ; Delkhosh, Mehdi ; Moayeri, Mohammad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algebra</topic><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Collocation methods</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decomposition</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Investigations</topic><topic>Mathematical and Computational Physics</topic><topic>Methods</topic><topic>Molecular</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parand, Kourosh</creatorcontrib><creatorcontrib>Latifi, Sobhan</creatorcontrib><creatorcontrib>Delkhosh, Mehdi</creatorcontrib><creatorcontrib>Moayeri, Mohammad M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parand, Kourosh</au><au>Latifi, Sobhan</au><au>Delkhosh, Mehdi</au><au>Moayeri, Mohammad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>133</volume><issue>1</issue><spage>28</spage><pages>28-</pages><artnum>28</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [ 0 , ∞ ) . Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y ( 0 ) , is obtained as - 1 . 191790649719421734122828603800159364 for η = 0 . 5 . Comparing to the best result obtained so far, it is accurate up to 36 decimal places.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2018-11859-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2018-01, Vol.133 (1), p.28, Article 28
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919732991
source Springer Nature
subjects Accuracy
Algebra
Applied and Technical Physics
Approximation
Atomic
Boundary conditions
Collocation methods
Complex Systems
Condensed Matter Physics
Decomposition
Differential equations
Engineering
Investigations
Mathematical and Computational Physics
Methods
Molecular
Numerical analysis
Optical and Plasma Physics
Ordinary differential equations
Partial differential equations
Physics
Physics and Astronomy
Porous materials
Porous media
Regular Article
Theoretical
title Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Lagrangian%20Jacobi%20Gauss%20collocation%20method%20for%20solving%20unsteady%20isothermal%20gas%20through%20a%20micro-nano%20porous%20medium&rft.jtitle=European%20physical%20journal%20plus&rft.au=Parand,%20Kourosh&rft.date=2018-01-01&rft.volume=133&rft.issue=1&rft.spage=28&rft.pages=28-&rft.artnum=28&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2018-11859-5&rft_dat=%3Cproquest_cross%3E2919732991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-58ee163f1ae9c69495364a42733aa00ce4e9c204e9ae1c02a171e35028bee2dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919732991&rft_id=info:pmid/&rfr_iscdi=true