Loading…
Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory
. In this paper, attention is paid to the prediction of wave propagation behaviors of functionally graded materials (FG) porous nanobeams based on Reddy’s higher-order shear deformation beam theory in conjunction with the non-local strain gradient theory. The governing equations of the porous nanobe...
Saved in:
Published in: | European physical journal plus 2018-09, Vol.133 (9), p.368, Article 368 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | .
In this paper, attention is paid to the prediction of wave propagation behaviors of functionally graded materials (FG) porous nanobeams based on Reddy’s higher-order shear deformation beam theory in conjunction with the non-local strain gradient theory. The governing equations of the porous nanobeams are derived with the help of the Hamilton principle. By solving an eigenvalue problem, the analytic dispersion relation is obtained. The results of Euler-Bernoulli beam and Timoshenko beam models are also presented. The influences of non-local parameter, strain gradient parameter, power law index and porosity volume fraction on the wave propagation are discussed in detail. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2018-12196-5 |