Loading…

Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field

Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2021-08, Vol.136 (8), p.795, Article 795
Main Authors: Babu, A. Benerji, Rao, N. Venkata Koteswara, Tagare, S. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3
cites cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3
container_end_page
container_issue 8
container_start_page 795
container_title European physical journal plus
container_volume 136
creator Babu, A. Benerji
Rao, N. Venkata Koteswara
Tagare, S. G.
description Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of q , Da , Λ , R 2 and L . In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.
doi_str_mv 10.1140/epjp/s13360-021-01736-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919736579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919736579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWLS_wYDPa3PbSx6leIOCL4qPIc3Otml3kzXZldZfb2oFfXNeZgbOOTN8CF1RckOpIDPoN_0sUs4LkhFGM0JLXmS7EzRhVJIsF0Kc_pnP0TTGDUklJBVSTFD7Bnrb7rHzrrUOdMDDGkLn1_qwYuPdB5jBeoetwxrHXocISd9rs4Ua9z74MeIOajt2uB4BDx6vfbCf3g26xZ1eORiswY2Ftr5EZ41uI0x_-gV6vb97mT9mi-eHp_ntIjOciyFLjxbMEFMZbWpR6YaXIElOWUHIUsiCsdKYisOy4ESWFWU6p0talII3DWm45hfo-pjbB_8-QhzUxo_BpZOKSSoToryUSVUeVSb4GAM0qg-202GvKFEHuupAVx3pqkRXfdNVu-Ssjs6YHG4F4Tf_P-sXtGiCuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919736579</pqid></control><display><type>article</type><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><source>Springer Nature</source><creator>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</creator><creatorcontrib>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</creatorcontrib><description>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of q , Da , Λ , R 2 and L . In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01736-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Convection ; Heat transport ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Momentum equation ; Nonlinear analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Porous media ; Rayleigh number ; Regular Article ; Stability analysis ; Standing waves ; Theoretical ; Traveling waves ; Two dimensional analysis</subject><ispartof>European physical journal plus, 2021-08, Vol.136 (8), p.795, Article 795</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</citedby><cites>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Babu, A. Benerji</creatorcontrib><creatorcontrib>Rao, N. Venkata Koteswara</creatorcontrib><creatorcontrib>Tagare, S. G.</creatorcontrib><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of q , Da , Λ , R 2 and L . In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Convection</subject><subject>Heat transport</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Momentum equation</subject><subject>Nonlinear analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porous media</subject><subject>Rayleigh number</subject><subject>Regular Article</subject><subject>Stability analysis</subject><subject>Standing waves</subject><subject>Theoretical</subject><subject>Traveling waves</subject><subject>Two dimensional analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWLS_wYDPa3PbSx6leIOCL4qPIc3Otml3kzXZldZfb2oFfXNeZgbOOTN8CF1RckOpIDPoN_0sUs4LkhFGM0JLXmS7EzRhVJIsF0Kc_pnP0TTGDUklJBVSTFD7Bnrb7rHzrrUOdMDDGkLn1_qwYuPdB5jBeoetwxrHXocISd9rs4Ua9z74MeIOajt2uB4BDx6vfbCf3g26xZ1eORiswY2Ftr5EZ41uI0x_-gV6vb97mT9mi-eHp_ntIjOciyFLjxbMEFMZbWpR6YaXIElOWUHIUsiCsdKYisOy4ESWFWU6p0talII3DWm45hfo-pjbB_8-QhzUxo_BpZOKSSoToryUSVUeVSb4GAM0qg-202GvKFEHuupAVx3pqkRXfdNVu-Ssjs6YHG4F4Tf_P-sXtGiCuA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Babu, A. Benerji</creator><creator>Rao, N. Venkata Koteswara</creator><creator>Tagare, S. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><author>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Convection</topic><topic>Heat transport</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Momentum equation</topic><topic>Nonlinear analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porous media</topic><topic>Rayleigh number</topic><topic>Regular Article</topic><topic>Stability analysis</topic><topic>Standing waves</topic><topic>Theoretical</topic><topic>Traveling waves</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, A. Benerji</creatorcontrib><creatorcontrib>Rao, N. Venkata Koteswara</creatorcontrib><creatorcontrib>Tagare, S. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, A. Benerji</au><au>Rao, N. Venkata Koteswara</au><au>Tagare, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>136</volume><issue>8</issue><spage>795</spage><pages>795-</pages><artnum>795</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of q , Da , Λ , R 2 and L . In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01736-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-08, Vol.136 (8), p.795, Article 795
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919736579
source Springer Nature
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Convection
Heat transport
Magnetic fields
Mathematical and Computational Physics
Molecular
Momentum equation
Nonlinear analysis
Optical and Plasma Physics
Physics
Physics and Astronomy
Porous media
Rayleigh number
Regular Article
Stability analysis
Standing waves
Theoretical
Traveling waves
Two dimensional analysis
title Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20nonlinear%20thermohaline%20convection%20in%20a%20sparsely%20packed%20porous%20medium%20due%20to%20horizontal%20magnetic%20field&rft.jtitle=European%20physical%20journal%20plus&rft.au=Babu,%20A.%20Benerji&rft.date=2021-08-01&rft.volume=136&rft.issue=8&rft.spage=795&rft.pages=795-&rft.artnum=795&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01736-x&rft_dat=%3Cproquest_cross%3E2919736579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919736579&rft_id=info:pmid/&rfr_iscdi=true