Loading…
Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field
Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique...
Saved in:
Published in: | European physical journal plus 2021-08, Vol.136 (8), p.795, Article 795 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3 |
container_end_page | |
container_issue | 8 |
container_start_page | 795 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Babu, A. Benerji Rao, N. Venkata Koteswara Tagare, S. G. |
description | Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of
q
,
Da
,
Λ
,
R
2
and
L
. In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied. |
doi_str_mv | 10.1140/epjp/s13360-021-01736-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919736579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919736579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWLS_wYDPa3PbSx6leIOCL4qPIc3Otml3kzXZldZfb2oFfXNeZgbOOTN8CF1RckOpIDPoN_0sUs4LkhFGM0JLXmS7EzRhVJIsF0Kc_pnP0TTGDUklJBVSTFD7Bnrb7rHzrrUOdMDDGkLn1_qwYuPdB5jBeoetwxrHXocISd9rs4Ua9z74MeIOajt2uB4BDx6vfbCf3g26xZ1eORiswY2Ftr5EZ41uI0x_-gV6vb97mT9mi-eHp_ntIjOciyFLjxbMEFMZbWpR6YaXIElOWUHIUsiCsdKYisOy4ESWFWU6p0talII3DWm45hfo-pjbB_8-QhzUxo_BpZOKSSoToryUSVUeVSb4GAM0qg-202GvKFEHuupAVx3pqkRXfdNVu-Ssjs6YHG4F4Tf_P-sXtGiCuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919736579</pqid></control><display><type>article</type><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><source>Springer Nature</source><creator>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</creator><creatorcontrib>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</creatorcontrib><description>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of
q
,
Da
,
Λ
,
R
2
and
L
. In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01736-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Convection ; Heat transport ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Momentum equation ; Nonlinear analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Porous media ; Rayleigh number ; Regular Article ; Stability analysis ; Standing waves ; Theoretical ; Traveling waves ; Two dimensional analysis</subject><ispartof>European physical journal plus, 2021-08, Vol.136 (8), p.795, Article 795</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</citedby><cites>FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Babu, A. Benerji</creatorcontrib><creatorcontrib>Rao, N. Venkata Koteswara</creatorcontrib><creatorcontrib>Tagare, S. G.</creatorcontrib><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of
q
,
Da
,
Λ
,
R
2
and
L
. In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Convection</subject><subject>Heat transport</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Momentum equation</subject><subject>Nonlinear analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porous media</subject><subject>Rayleigh number</subject><subject>Regular Article</subject><subject>Stability analysis</subject><subject>Standing waves</subject><subject>Theoretical</subject><subject>Traveling waves</subject><subject>Two dimensional analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWLS_wYDPa3PbSx6leIOCL4qPIc3Otml3kzXZldZfb2oFfXNeZgbOOTN8CF1RckOpIDPoN_0sUs4LkhFGM0JLXmS7EzRhVJIsF0Kc_pnP0TTGDUklJBVSTFD7Bnrb7rHzrrUOdMDDGkLn1_qwYuPdB5jBeoetwxrHXocISd9rs4Ua9z74MeIOajt2uB4BDx6vfbCf3g26xZ1eORiswY2Ftr5EZ41uI0x_-gV6vb97mT9mi-eHp_ntIjOciyFLjxbMEFMZbWpR6YaXIElOWUHIUsiCsdKYisOy4ESWFWU6p0talII3DWm45hfo-pjbB_8-QhzUxo_BpZOKSSoToryUSVUeVSb4GAM0qg-202GvKFEHuupAVx3pqkRXfdNVu-Ssjs6YHG4F4Tf_P-sXtGiCuA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Babu, A. Benerji</creator><creator>Rao, N. Venkata Koteswara</creator><creator>Tagare, S. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</title><author>Babu, A. Benerji ; Rao, N. Venkata Koteswara ; Tagare, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Convection</topic><topic>Heat transport</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Momentum equation</topic><topic>Nonlinear analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porous media</topic><topic>Rayleigh number</topic><topic>Regular Article</topic><topic>Stability analysis</topic><topic>Standing waves</topic><topic>Theoretical</topic><topic>Traveling waves</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, A. Benerji</creatorcontrib><creatorcontrib>Rao, N. Venkata Koteswara</creatorcontrib><creatorcontrib>Tagare, S. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, A. Benerji</au><au>Rao, N. Venkata Koteswara</au><au>Tagare, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>136</volume><issue>8</issue><spage>795</spage><pages>795-</pages><artnum>795</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Thermohaline convection in a sparsely packed porous medium is studied due to horizontal magnetic field, using both linear and weakly nonlinear stability analyses. The Darcy–Lapwood–Brinkman (DLB) model is employed as the momentum equation. In the linear stability analysis, the normal mode technique is used to find the thermal critical Rayleigh number which is a function of
q
,
Da
,
Λ
,
R
2
and
L
. In the weakly nonlinear analysis, a nonlinear two-dimensional Landau–Ginzburg (LG) equation is derived at the onset of stationary convection and the secondary instabilities and heat transport by convection are studied. Coupled one-dimensional LG equations are derived at the onset of oscillatory convection, and the stability regions of steady state, standing waves and travelling waves are studied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01736-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-08, Vol.136 (8), p.795, Article 795 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919736579 |
source | Springer Nature |
subjects | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Convection Heat transport Magnetic fields Mathematical and Computational Physics Molecular Momentum equation Nonlinear analysis Optical and Plasma Physics Physics Physics and Astronomy Porous media Rayleigh number Regular Article Stability analysis Standing waves Theoretical Traveling waves Two dimensional analysis |
title | Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20nonlinear%20thermohaline%20convection%20in%20a%20sparsely%20packed%20porous%20medium%20due%20to%20horizontal%20magnetic%20field&rft.jtitle=European%20physical%20journal%20plus&rft.au=Babu,%20A.%20Benerji&rft.date=2021-08-01&rft.volume=136&rft.issue=8&rft.spage=795&rft.pages=795-&rft.artnum=795&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01736-x&rft_dat=%3Cproquest_cross%3E2919736579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-44462c0c8cacd48af37e90512600b496227cc83eb63097812a51b16743ff0f3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919736579&rft_id=info:pmid/&rfr_iscdi=true |