Loading…
Comparative analysis of signal-to-noise ratio in correlation plenoptic imaging architectures
Correlation plenoptic imaging (CPI) is a scanning-free diffraction-limited 3D optical imaging technique exploiting the peculiar properties of correlated light sources. CPI has been further extended to samples of interest to microscopy, such as fluorescent or scattering objects, in a modified archite...
Saved in:
Published in: | European physical journal plus 2022-10, Vol.137 (10), p.1123, Article 1123 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Correlation plenoptic imaging (CPI) is a scanning-free diffraction-limited 3D optical imaging technique exploiting the peculiar properties of correlated light sources. CPI has been further extended to samples of interest to microscopy, such as fluorescent or scattering objects, in a modified architecture named correlation light-field microscopy (CLM). Interestingly, experiments have shown that the noise performances of CLM are significantly improved over the original CPI scheme, leading to better images and faster acquisition. In this work, we provide a theoretical foundation to such advantage by investigating the properties of both the signal-to-noise and the signal-to-background ratios of CLM and the original CPI setup. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-022-03295-1 |