Loading…

Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles

A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations....

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2021-08, Vol.136 (8), p.885, Article 885
Main Authors: chandanam, Veena, lakshmi, C. Venkata, Venkatadri, K., Bég, O. Anwar, Prasad, V. Ramachandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063
cites cdi_FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063
container_end_page
container_issue 8
container_start_page 885
container_title European physical journal plus
container_volume 136
creator chandanam, Veena
lakshmi, C. Venkata
Venkatadri, K.
Bég, O. Anwar
Prasad, V. Ramachandra
description A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations. The pressure gradient term is eliminated by using the vorticity–stream ( ω - ψ ) function approach. The emerging dimensionless governing equations are employed by the regular finite difference scheme along with thermofluidic boundary conditions. The efficiency of the obtained computed results for isotherms and streamlines is validated via comparison with previously published work. The impact of physical parameters on streamlines and temperature contours for an extensive range of Rayleigh number (Ra = 10 3 –10 5 ), Hartmann magnetohydrodynamic number (Ha = 5–30), Darcy parameter (Da = 0.0001–0.1) for fixed Prandtl number (Pr = 0.71) is considered. Numerical results are also presented for local and average Nusselt numbers along the hot base wall. Interesting features of the thermofluid behaviour are revealed. At lower Rayleigh number, the isotherms are generally parallel to the inclined wall and only distorted substantially near the obstacles at the left vertical adiabatic wall; however, with increasing Rayleigh number , this distortion is magnified in the core zone and simultaneously warmer zones expand towards the inclined cold wall. The simulations are relevant to magnetic materials processing and hybrid magnetic fuel cells.
doi_str_mv 10.1140/epjp/s13360-021-01881-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919739064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919739064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoKOP8BgOuqy9N-pGlDH7BoBtdh9c2HTNMk5qkgmv_uOmMoDuzySO55z44hFwwuGJMwLUet-N1YJyXkEHOMmB1zTJ-RM5yJiErhBDHf-ZTsgxhC-kIyYQUZ-TraRq0Ny3uaDDDtMNonKWup_FN-yG9DmhxowdtI-0mb-yGWoyTTz-tsx-63eeNpUhH590UaPQG7SY1edrih4mfczCisTOLxlO0HX1zkbomRGx3OpyTkx53QS9_7gV5vbt9WT1k6-f7x9XNOmt5zWPGGNSdkLJCBmUlKihK6FlXNlBjDlw2stCl4GkWrMCmKXqZlxxk3vFOApR8QS4PvaN375MOUW3d5G1aqXLJZMUlJH5BqkOq9S4Er3s1ejOg_1QM1CxdzdLVQbpK0tVeuuKJrA9kGGdR2v_2_4d-A_c6idY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919739064</pqid></control><display><type>article</type><title>Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles</title><source>Springer Nature</source><creator>chandanam, Veena ; lakshmi, C. Venkata ; Venkatadri, K. ; Bég, O. Anwar ; Prasad, V. Ramachandra</creator><creatorcontrib>chandanam, Veena ; lakshmi, C. Venkata ; Venkatadri, K. ; Bég, O. Anwar ; Prasad, V. Ramachandra</creatorcontrib><description>A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations. The pressure gradient term is eliminated by using the vorticity–stream ( ω - ψ ) function approach. The emerging dimensionless governing equations are employed by the regular finite difference scheme along with thermofluidic boundary conditions. The efficiency of the obtained computed results for isotherms and streamlines is validated via comparison with previously published work. The impact of physical parameters on streamlines and temperature contours for an extensive range of Rayleigh number (Ra = 10 3 –10 5 ), Hartmann magnetohydrodynamic number (Ha = 5–30), Darcy parameter (Da = 0.0001–0.1) for fixed Prandtl number (Pr = 0.71) is considered. Numerical results are also presented for local and average Nusselt numbers along the hot base wall. Interesting features of the thermofluid behaviour are revealed. At lower Rayleigh number, the isotherms are generally parallel to the inclined wall and only distorted substantially near the obstacles at the left vertical adiabatic wall; however, with increasing Rayleigh number , this distortion is magnified in the core zone and simultaneously warmer zones expand towards the inclined cold wall. The simulations are relevant to magnetic materials processing and hybrid magnetic fuel cells.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01881-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Barriers ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Convection ; Differential equations ; Entropy ; Finite difference method ; Finite volume method ; Free convection ; Fuel cells ; Heat transfer ; Investigations ; Isotherms ; Magnetic fields ; Magnetic materials ; Magnetohydrodynamics ; Materials processing ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanoparticles ; Optical and Plasma Physics ; Parameters ; Partial differential equations ; Physical properties ; Physics ; Physics and Astronomy ; Porous materials ; Prandtl number ; Rayleigh number ; Regular Article ; Theoretical ; Thermal management ; Thermal simulation ; Vorticity</subject><ispartof>European physical journal plus, 2021-08, Vol.136 (8), p.885, Article 885</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063</citedby><cites>FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>chandanam, Veena</creatorcontrib><creatorcontrib>lakshmi, C. Venkata</creatorcontrib><creatorcontrib>Venkatadri, K.</creatorcontrib><creatorcontrib>Bég, O. Anwar</creatorcontrib><creatorcontrib>Prasad, V. Ramachandra</creatorcontrib><title>Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations. The pressure gradient term is eliminated by using the vorticity–stream ( ω - ψ ) function approach. The emerging dimensionless governing equations are employed by the regular finite difference scheme along with thermofluidic boundary conditions. The efficiency of the obtained computed results for isotherms and streamlines is validated via comparison with previously published work. The impact of physical parameters on streamlines and temperature contours for an extensive range of Rayleigh number (Ra = 10 3 –10 5 ), Hartmann magnetohydrodynamic number (Ha = 5–30), Darcy parameter (Da = 0.0001–0.1) for fixed Prandtl number (Pr = 0.71) is considered. Numerical results are also presented for local and average Nusselt numbers along the hot base wall. Interesting features of the thermofluid behaviour are revealed. At lower Rayleigh number, the isotherms are generally parallel to the inclined wall and only distorted substantially near the obstacles at the left vertical adiabatic wall; however, with increasing Rayleigh number , this distortion is magnified in the core zone and simultaneously warmer zones expand towards the inclined cold wall. The simulations are relevant to magnetic materials processing and hybrid magnetic fuel cells.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Barriers</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Convection</subject><subject>Differential equations</subject><subject>Entropy</subject><subject>Finite difference method</subject><subject>Finite volume method</subject><subject>Free convection</subject><subject>Fuel cells</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Isotherms</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Magnetohydrodynamics</subject><subject>Materials processing</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porous materials</subject><subject>Prandtl number</subject><subject>Rayleigh number</subject><subject>Regular Article</subject><subject>Theoretical</subject><subject>Thermal management</subject><subject>Thermal simulation</subject><subject>Vorticity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoKOP8BgOuqy9N-pGlDH7BoBtdh9c2HTNMk5qkgmv_uOmMoDuzySO55z44hFwwuGJMwLUet-N1YJyXkEHOMmB1zTJ-RM5yJiErhBDHf-ZTsgxhC-kIyYQUZ-TraRq0Ny3uaDDDtMNonKWup_FN-yG9DmhxowdtI-0mb-yGWoyTTz-tsx-63eeNpUhH590UaPQG7SY1edrih4mfczCisTOLxlO0HX1zkbomRGx3OpyTkx53QS9_7gV5vbt9WT1k6-f7x9XNOmt5zWPGGNSdkLJCBmUlKihK6FlXNlBjDlw2stCl4GkWrMCmKXqZlxxk3vFOApR8QS4PvaN375MOUW3d5G1aqXLJZMUlJH5BqkOq9S4Er3s1ejOg_1QM1CxdzdLVQbpK0tVeuuKJrA9kGGdR2v_2_4d-A_c6idY</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>chandanam, Veena</creator><creator>lakshmi, C. Venkata</creator><creator>Venkatadri, K.</creator><creator>Bég, O. Anwar</creator><creator>Prasad, V. Ramachandra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles</title><author>chandanam, Veena ; lakshmi, C. Venkata ; Venkatadri, K. ; Bég, O. Anwar ; Prasad, V. Ramachandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Barriers</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Convection</topic><topic>Differential equations</topic><topic>Entropy</topic><topic>Finite difference method</topic><topic>Finite volume method</topic><topic>Free convection</topic><topic>Fuel cells</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Isotherms</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Magnetohydrodynamics</topic><topic>Materials processing</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porous materials</topic><topic>Prandtl number</topic><topic>Rayleigh number</topic><topic>Regular Article</topic><topic>Theoretical</topic><topic>Thermal management</topic><topic>Thermal simulation</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>chandanam, Veena</creatorcontrib><creatorcontrib>lakshmi, C. Venkata</creatorcontrib><creatorcontrib>Venkatadri, K.</creatorcontrib><creatorcontrib>Bég, O. Anwar</creatorcontrib><creatorcontrib>Prasad, V. Ramachandra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>chandanam, Veena</au><au>lakshmi, C. Venkata</au><au>Venkatadri, K.</au><au>Bég, O. Anwar</au><au>Prasad, V. Ramachandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>136</volume><issue>8</issue><spage>885</spage><pages>885-</pages><artnum>885</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations. The pressure gradient term is eliminated by using the vorticity–stream ( ω - ψ ) function approach. The emerging dimensionless governing equations are employed by the regular finite difference scheme along with thermofluidic boundary conditions. The efficiency of the obtained computed results for isotherms and streamlines is validated via comparison with previously published work. The impact of physical parameters on streamlines and temperature contours for an extensive range of Rayleigh number (Ra = 10 3 –10 5 ), Hartmann magnetohydrodynamic number (Ha = 5–30), Darcy parameter (Da = 0.0001–0.1) for fixed Prandtl number (Pr = 0.71) is considered. Numerical results are also presented for local and average Nusselt numbers along the hot base wall. Interesting features of the thermofluid behaviour are revealed. At lower Rayleigh number, the isotherms are generally parallel to the inclined wall and only distorted substantially near the obstacles at the left vertical adiabatic wall; however, with increasing Rayleigh number , this distortion is magnified in the core zone and simultaneously warmer zones expand towards the inclined cold wall. The simulations are relevant to magnetic materials processing and hybrid magnetic fuel cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01881-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-08, Vol.136 (8), p.885, Article 885
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919739064
source Springer Nature
subjects Applied and Technical Physics
Atomic
Barriers
Boundary conditions
Complex Systems
Condensed Matter Physics
Convection
Differential equations
Entropy
Finite difference method
Finite volume method
Free convection
Fuel cells
Heat transfer
Investigations
Isotherms
Magnetic fields
Magnetic materials
Magnetohydrodynamics
Materials processing
Mathematical and Computational Physics
Mathematical models
Molecular
Nanoparticles
Optical and Plasma Physics
Parameters
Partial differential equations
Physical properties
Physics
Physics and Astronomy
Porous materials
Prandtl number
Rayleigh number
Regular Article
Theoretical
Thermal management
Thermal simulation
Vorticity
title Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20thermal%20management%20during%20natural%20convection%20in%20a%20porous%20triangular%20cavity%20containing%20air%20and%20hot%20obstacles&rft.jtitle=European%20physical%20journal%20plus&rft.au=chandanam,%20Veena&rft.date=2021-08-01&rft.volume=136&rft.issue=8&rft.spage=885&rft.pages=885-&rft.artnum=885&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01881-3&rft_dat=%3Cproquest_cross%3E2919739064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-1108d4997a1067470560f1d6b08a2039b95e643a20415abb5f9263092d3d90063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919739064&rft_id=info:pmid/&rfr_iscdi=true