Loading…

Learning in Repeated Interactions on Networks

We study how long‐lived, rational agents learn in a social network. In every period, after observing the past actions of his neighbors, each agent receives a private signal, and chooses an action whose payoff depends only on the state. Since equilibrium actions depend on higher‐order beliefs, it is...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 2024-01, Vol.92 (1), p.1-27
Main Authors: Huang, Wanying, Strack, Philipp, Tamuz, Omer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study how long‐lived, rational agents learn in a social network. In every period, after observing the past actions of his neighbors, each agent receives a private signal, and chooses an action whose payoff depends only on the state. Since equilibrium actions depend on higher‐order beliefs, it is difficult to characterize behavior. Nevertheless, we show that regardless of the size and shape of the network, the utility function, and the patience of the agents, the speed of learning in any equilibrium is bounded from above by a constant that only depends on the private signal distribution.
ISSN:0012-9682
1468-0262
DOI:10.3982/ECTA20806