Loading…
Nanostructured Fly Ash as Reinforcement in a Plastomer-Based Composite: A New Strategy in Value Addition to Thermal Power Station Fly Ash
Class-F fly ash (FA) from a coal-fired thermal power station was subjected to high energy ball milling-induced mechanochemical activation aided by a surfactant. Subsequently, ethylene-octene copolymer/mechanochemically activated FA (EOC/MCA-FA) composites were prepared by solution casting. The surfa...
Saved in:
Published in: | SILICON 2016-01, Vol.8 (1), p.159-173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Class-F fly ash (FA) from a coal-fired thermal power station was subjected to high energy ball milling-induced mechanochemical activation aided by a surfactant. Subsequently, ethylene-octene copolymer/mechanochemically activated FA (EOC/MCA-FA) composites were prepared by solution casting. The surface modification of FA was confirmed from contact angle measurements and FTIR spectroscopy, which accounts for a good interaction between MCA-FA and the polymer matrix. X-ray diffraction reveals that the crystallite size of quartz phase present in FA got reduced, while the relative lattice strain on it increased during milling. Morphological studies revealed that interfacial adhesion between the polymer and MCA-FA is good and this accounts for the improvement in mechanical properties of the composites even at the minimum filler loading. Flame retardance of the matrix polymer is improved by the addition of either fresh FA or MCA-FA. The results imply that FA is a valuable reinforcing filler for ethylene-octene copolymer and its mechanochemical activation is an effective strategy for its future use. |
---|---|
ISSN: | 1876-990X 1876-9918 |
DOI: | 10.1007/s12633-014-9194-2 |