Loading…

Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model

A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Earth System Science 2020-12, Vol.129 (1), p.40, Article 40
Main Authors: Narasimha Rao, N, Shekhar, M S, Singh, G P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3
cites cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3
container_end_page
container_issue 1
container_start_page 40
container_title Journal of Earth System Science
container_volume 129
creator Narasimha Rao, N
Shekhar, M S
Singh, G P
description A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.
doi_str_mv 10.1007/s12040-019-1315-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919900864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919900864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuAG11Ub5K2d7IU36AI4oi7kDZ3NDptxyQV59_boYIrVxcO5zsXPsYOBJwIADyNQkIOGQidCSWKTG6wCWhUGWL-sskmUuWY5UriNtuJ8R1AlVPUE9ZfdYFqG5NvXzl9p0AN8eUQ-aVPNvmu5fRFbeLdFwV-37fRr2zw_GiWkg3248227pj3cY2ri-ezR-5sstzG6Bu_GAd8yxuKXaztgnjTOVrssa25XUTa_727bHZ1-XR-k909XN-en91ltRJlyrCSZQVVUZfgAMsKXV3IQqFCqCUgTV2tHE3zwknt0JKq5qhRa9IWCyvnapcdjrvL0H32FJN57_rQDi-N1EJrgGmZDy0xturQxRhobpbBNzasjACztmtGu2awa9Z2jRwYOTJx6LavFP6W_4d-AN8EfmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919900864</pqid></control><display><type>article</type><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><source>Springer Link</source><creator>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</creator><creatorcontrib>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</creatorcontrib><description>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</description><identifier>ISSN: 2347-4327</identifier><identifier>ISSN: 0253-4126</identifier><identifier>EISSN: 0973-774X</identifier><identifier>DOI: 10.1007/s12040-019-1315-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Climate change ; Cloud water ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Flash flooding ; Flash floods ; Flood damage ; Floods ; Hydroelectric power ; Landslides ; Landslides &amp; mudslides ; Mathematical models ; Microphysics ; Precipitation ; Precipitation forecasting ; Radiation ; Rain ; Relative humidity ; Remote sensing ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Storm damage ; Temperature ; Three dimensional models ; Vertical velocities ; Weather ; Weather forecasting ; Wind</subject><ispartof>Journal of Earth System Science, 2020-12, Vol.129 (1), p.40, Article 40</ispartof><rights>Indian Academy of Sciences 2019</rights><rights>Indian Academy of Sciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</citedby><cites>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</cites><orcidid>0000-0003-0694-3029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narasimha Rao, N</creatorcontrib><creatorcontrib>Shekhar, M S</creatorcontrib><creatorcontrib>Singh, G P</creatorcontrib><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><title>Journal of Earth System Science</title><addtitle>J Earth Syst Sci</addtitle><description>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</description><subject>Climate change</subject><subject>Cloud water</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Flash flooding</subject><subject>Flash floods</subject><subject>Flood damage</subject><subject>Floods</subject><subject>Hydroelectric power</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Microphysics</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Radiation</subject><subject>Rain</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Storm damage</subject><subject>Temperature</subject><subject>Three dimensional models</subject><subject>Vertical velocities</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>2347-4327</issn><issn>0253-4126</issn><issn>0973-774X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOD5-gLuAG11Ub5K2d7IU36AI4oi7kDZ3NDptxyQV59_boYIrVxcO5zsXPsYOBJwIADyNQkIOGQidCSWKTG6wCWhUGWL-sskmUuWY5UriNtuJ8R1AlVPUE9ZfdYFqG5NvXzl9p0AN8eUQ-aVPNvmu5fRFbeLdFwV-37fRr2zw_GiWkg3248227pj3cY2ri-ezR-5sstzG6Bu_GAd8yxuKXaztgnjTOVrssa25XUTa_727bHZ1-XR-k909XN-en91ltRJlyrCSZQVVUZfgAMsKXV3IQqFCqCUgTV2tHE3zwknt0JKq5qhRa9IWCyvnapcdjrvL0H32FJN57_rQDi-N1EJrgGmZDy0xturQxRhobpbBNzasjACztmtGu2awa9Z2jRwYOTJx6LavFP6W_4d-AN8EfmY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Narasimha Rao, N</creator><creator>Shekhar, M S</creator><creator>Singh, G P</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0694-3029</orcidid></search><sort><creationdate>20201201</creationdate><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><author>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Climate change</topic><topic>Cloud water</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Flash flooding</topic><topic>Flash floods</topic><topic>Flood damage</topic><topic>Floods</topic><topic>Hydroelectric power</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Microphysics</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Radiation</topic><topic>Rain</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Storm damage</topic><topic>Temperature</topic><topic>Three dimensional models</topic><topic>Vertical velocities</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narasimha Rao, N</creatorcontrib><creatorcontrib>Shekhar, M S</creatorcontrib><creatorcontrib>Singh, G P</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Earth System Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narasimha Rao, N</au><au>Shekhar, M S</au><au>Singh, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</atitle><jtitle>Journal of Earth System Science</jtitle><stitle>J Earth Syst Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>129</volume><issue>1</issue><spage>40</spage><pages>40-</pages><artnum>40</artnum><issn>2347-4327</issn><issn>0253-4126</issn><eissn>0973-774X</eissn><abstract>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12040-019-1315-2</doi><orcidid>https://orcid.org/0000-0003-0694-3029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2347-4327
ispartof Journal of Earth System Science, 2020-12, Vol.129 (1), p.40, Article 40
issn 2347-4327
0253-4126
0973-774X
language eng
recordid cdi_proquest_journals_2919900864
source Springer Link
subjects Climate change
Cloud water
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Extreme weather
Flash flooding
Flash floods
Flood damage
Floods
Hydroelectric power
Landslides
Landslides & mudslides
Mathematical models
Microphysics
Precipitation
Precipitation forecasting
Radiation
Rain
Relative humidity
Remote sensing
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Storm damage
Temperature
Three dimensional models
Vertical velocities
Weather
Weather forecasting
Wind
title Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20extreme%20precipitation%20event%20over%20Munsiyari%20(Uttarakhand)%20using%203DVAR%20data%20assimilation%20in%20mesoscale%20model&rft.jtitle=Journal%20of%20Earth%20System%20Science&rft.au=Narasimha%20Rao,%20N&rft.date=2020-12-01&rft.volume=129&rft.issue=1&rft.spage=40&rft.pages=40-&rft.artnum=40&rft.issn=2347-4327&rft.eissn=0973-774X&rft_id=info:doi/10.1007/s12040-019-1315-2&rft_dat=%3Cproquest_cross%3E2919900864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919900864&rft_id=info:pmid/&rfr_iscdi=true