Loading…
Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model
A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation...
Saved in:
Published in: | Journal of Earth System Science 2020-12, Vol.129 (1), p.40, Article 40 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 40 |
container_title | Journal of Earth System Science |
container_volume | 129 |
creator | Narasimha Rao, N Shekhar, M S Singh, G P |
description | A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region. |
doi_str_mv | 10.1007/s12040-019-1315-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919900864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919900864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuAG11Ub5K2d7IU36AI4oi7kDZ3NDptxyQV59_boYIrVxcO5zsXPsYOBJwIADyNQkIOGQidCSWKTG6wCWhUGWL-sskmUuWY5UriNtuJ8R1AlVPUE9ZfdYFqG5NvXzl9p0AN8eUQ-aVPNvmu5fRFbeLdFwV-37fRr2zw_GiWkg3248227pj3cY2ri-ezR-5sstzG6Bu_GAd8yxuKXaztgnjTOVrssa25XUTa_727bHZ1-XR-k909XN-en91ltRJlyrCSZQVVUZfgAMsKXV3IQqFCqCUgTV2tHE3zwknt0JKq5qhRa9IWCyvnapcdjrvL0H32FJN57_rQDi-N1EJrgGmZDy0xturQxRhobpbBNzasjACztmtGu2awa9Z2jRwYOTJx6LavFP6W_4d-AN8EfmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919900864</pqid></control><display><type>article</type><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><source>Springer Link</source><creator>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</creator><creatorcontrib>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</creatorcontrib><description>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</description><identifier>ISSN: 2347-4327</identifier><identifier>ISSN: 0253-4126</identifier><identifier>EISSN: 0973-774X</identifier><identifier>DOI: 10.1007/s12040-019-1315-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Climate change ; Cloud water ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Flash flooding ; Flash floods ; Flood damage ; Floods ; Hydroelectric power ; Landslides ; Landslides & mudslides ; Mathematical models ; Microphysics ; Precipitation ; Precipitation forecasting ; Radiation ; Rain ; Relative humidity ; Remote sensing ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Storm damage ; Temperature ; Three dimensional models ; Vertical velocities ; Weather ; Weather forecasting ; Wind</subject><ispartof>Journal of Earth System Science, 2020-12, Vol.129 (1), p.40, Article 40</ispartof><rights>Indian Academy of Sciences 2019</rights><rights>Indian Academy of Sciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</citedby><cites>FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</cites><orcidid>0000-0003-0694-3029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narasimha Rao, N</creatorcontrib><creatorcontrib>Shekhar, M S</creatorcontrib><creatorcontrib>Singh, G P</creatorcontrib><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><title>Journal of Earth System Science</title><addtitle>J Earth Syst Sci</addtitle><description>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</description><subject>Climate change</subject><subject>Cloud water</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Flash flooding</subject><subject>Flash floods</subject><subject>Flood damage</subject><subject>Floods</subject><subject>Hydroelectric power</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Mathematical models</subject><subject>Microphysics</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Radiation</subject><subject>Rain</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Storm damage</subject><subject>Temperature</subject><subject>Three dimensional models</subject><subject>Vertical velocities</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>2347-4327</issn><issn>0253-4126</issn><issn>0973-774X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOD5-gLuAG11Ub5K2d7IU36AI4oi7kDZ3NDptxyQV59_boYIrVxcO5zsXPsYOBJwIADyNQkIOGQidCSWKTG6wCWhUGWL-sskmUuWY5UriNtuJ8R1AlVPUE9ZfdYFqG5NvXzl9p0AN8eUQ-aVPNvmu5fRFbeLdFwV-37fRr2zw_GiWkg3248227pj3cY2ri-ezR-5sstzG6Bu_GAd8yxuKXaztgnjTOVrssa25XUTa_727bHZ1-XR-k909XN-en91ltRJlyrCSZQVVUZfgAMsKXV3IQqFCqCUgTV2tHE3zwknt0JKq5qhRa9IWCyvnapcdjrvL0H32FJN57_rQDi-N1EJrgGmZDy0xturQxRhobpbBNzasjACztmtGu2awa9Z2jRwYOTJx6LavFP6W_4d-AN8EfmY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Narasimha Rao, N</creator><creator>Shekhar, M S</creator><creator>Singh, G P</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0694-3029</orcidid></search><sort><creationdate>20201201</creationdate><title>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</title><author>Narasimha Rao, N ; Shekhar, M S ; Singh, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Climate change</topic><topic>Cloud water</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Flash flooding</topic><topic>Flash floods</topic><topic>Flood damage</topic><topic>Floods</topic><topic>Hydroelectric power</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Mathematical models</topic><topic>Microphysics</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Radiation</topic><topic>Rain</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Storm damage</topic><topic>Temperature</topic><topic>Three dimensional models</topic><topic>Vertical velocities</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narasimha Rao, N</creatorcontrib><creatorcontrib>Shekhar, M S</creatorcontrib><creatorcontrib>Singh, G P</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Earth System Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narasimha Rao, N</au><au>Shekhar, M S</au><au>Singh, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model</atitle><jtitle>Journal of Earth System Science</jtitle><stitle>J Earth Syst Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>129</volume><issue>1</issue><spage>40</spage><pages>40-</pages><artnum>40</artnum><issn>2347-4327</issn><issn>0253-4126</issn><eissn>0973-774X</eissn><abstract>A localized extreme precipitation event occurred over Munsiyari (Uttarakhand, India) on 2nd July 2018 causing flash floods, landslides and damage to the hydropower project. A preliminary study has been carried out by using Weather Research and Forecasting (WRF) model with three-dimensional variation data assimilation technique (3DVAR) to examine the feasibility of the model to predict the localized phenomena. Sensitivity experiments were carried out with two different microphysics in the model. Results show that P3 1-category plus double moment cloud water microphysics scheme with 3DVAR in WRF simulates the quantity of precipitation closer to the observed precipitation over Munsiyari. The vertical velocity and relative humidity were also simulated well during 3DVAR data assimilation as compared to without data assimilation over study region.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12040-019-1315-2</doi><orcidid>https://orcid.org/0000-0003-0694-3029</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2347-4327 |
ispartof | Journal of Earth System Science, 2020-12, Vol.129 (1), p.40, Article 40 |
issn | 2347-4327 0253-4126 0973-774X |
language | eng |
recordid | cdi_proquest_journals_2919900864 |
source | Springer Link |
subjects | Climate change Cloud water Data assimilation Data collection Earth and Environmental Science Earth Sciences Extreme weather Flash flooding Flash floods Flood damage Floods Hydroelectric power Landslides Landslides & mudslides Mathematical models Microphysics Precipitation Precipitation forecasting Radiation Rain Relative humidity Remote sensing Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Storm damage Temperature Three dimensional models Vertical velocities Weather Weather forecasting Wind |
title | Forecasting extreme precipitation event over Munsiyari (Uttarakhand) using 3DVAR data assimilation in mesoscale model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20extreme%20precipitation%20event%20over%20Munsiyari%20(Uttarakhand)%20using%203DVAR%20data%20assimilation%20in%20mesoscale%20model&rft.jtitle=Journal%20of%20Earth%20System%20Science&rft.au=Narasimha%20Rao,%20N&rft.date=2020-12-01&rft.volume=129&rft.issue=1&rft.spage=40&rft.pages=40-&rft.artnum=40&rft.issn=2347-4327&rft.eissn=0973-774X&rft_id=info:doi/10.1007/s12040-019-1315-2&rft_dat=%3Cproquest_cross%3E2919900864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-7b26b0b5c60d076b7dc52537370c207e8dc3de845d29d7ae3bf79799e9a75a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919900864&rft_id=info:pmid/&rfr_iscdi=true |