Loading…
Simulation and analytical modeling of high-speed droplet impact onto a surface
The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated...
Saved in:
Published in: | Physics of fluids (1994) 2024-01, Vol.36 (1) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Weigand, Bernhard |
description | The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy. |
doi_str_mv | 10.1063/5.0186883 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919906048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919906048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPwDS0wgpZzjxh8jqiggVTAAs-XaTusqiYPtDP33pLQzw-luePTq9CJ0S2BGgNHHagZEMCHoGZoQELLgjLHzw82hYIySS3SV0g4AqCzZBL1_-nZodPahw7qz4-hmn73RDW6DdY3vNjjUeOs32yL1zllsY-gbl7Fve20yDl0OWOM0xFobd40uat0kd3PaU_S9fP5avBarj5e3xdOqMKXguSDCCqPntloLYlilATRnhjsCpS05pcySNeVr6SphzNwZB4Lxuqaj5mCkoVN0d8ztY_gZXMpqF4Y4_p5UKYmUwGAuRnV_VCaGlKKrVR99q-NeEVCHulSlTnWN9uFok_H5r49_8C-caGmu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919906048</pqid></control><display><type>article</type><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Weigand, Bernhard</creator><creatorcontrib>Weigand, Bernhard</creatorcontrib><description>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0186883</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cavitation ; Compressibility effects ; Droplets ; Fluid dynamics ; Impact loads ; Impact velocity ; Industrial applications ; Low pressure ; Mathematical analysis ; Mathematical models ; Modelling ; Rarefaction ; Solid surfaces</subject><ispartof>Physics of fluids (1994), 2024-01, Vol.36 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</cites><orcidid>0000-0002-1469-079X ; 0000-0001-8456-1865 ; 0000-0002-8430-6917 ; 0009-0003-8322-5976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1554,27905,27906</link.rule.ids></links><search><creatorcontrib>Weigand, Bernhard</creatorcontrib><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><title>Physics of fluids (1994)</title><description>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</description><subject>Cavitation</subject><subject>Compressibility effects</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Impact loads</subject><subject>Impact velocity</subject><subject>Industrial applications</subject><subject>Low pressure</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Rarefaction</subject><subject>Solid surfaces</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPwDS0wgpZzjxh8jqiggVTAAs-XaTusqiYPtDP33pLQzw-luePTq9CJ0S2BGgNHHagZEMCHoGZoQELLgjLHzw82hYIySS3SV0g4AqCzZBL1_-nZodPahw7qz4-hmn73RDW6DdY3vNjjUeOs32yL1zllsY-gbl7Fve20yDl0OWOM0xFobd40uat0kd3PaU_S9fP5avBarj5e3xdOqMKXguSDCCqPntloLYlilATRnhjsCpS05pcySNeVr6SphzNwZB4Lxuqaj5mCkoVN0d8ztY_gZXMpqF4Y4_p5UKYmUwGAuRnV_VCaGlKKrVR99q-NeEVCHulSlTnWN9uFok_H5r49_8C-caGmu</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Weigand, Bernhard</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1469-079X</orcidid><orcidid>https://orcid.org/0000-0001-8456-1865</orcidid><orcidid>https://orcid.org/0000-0002-8430-6917</orcidid><orcidid>https://orcid.org/0009-0003-8322-5976</orcidid></search><sort><creationdate>202401</creationdate><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><author>Weigand, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cavitation</topic><topic>Compressibility effects</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Impact loads</topic><topic>Impact velocity</topic><topic>Industrial applications</topic><topic>Low pressure</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Rarefaction</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigand, Bernhard</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigand, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and analytical modeling of high-speed droplet impact onto a surface</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0186883</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1469-079X</orcidid><orcidid>https://orcid.org/0000-0001-8456-1865</orcidid><orcidid>https://orcid.org/0000-0002-8430-6917</orcidid><orcidid>https://orcid.org/0009-0003-8322-5976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-01, Vol.36 (1) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2919906048 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Cavitation Compressibility effects Droplets Fluid dynamics Impact loads Impact velocity Industrial applications Low pressure Mathematical analysis Mathematical models Modelling Rarefaction Solid surfaces |
title | Simulation and analytical modeling of high-speed droplet impact onto a surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20analytical%20modeling%20of%20high-speed%20droplet%20impact%20onto%20a%20surface&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Weigand,%20Bernhard&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0186883&rft_dat=%3Cproquest_cross%3E2919906048%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919906048&rft_id=info:pmid/&rfr_iscdi=true |