Loading…

Simulation and analytical modeling of high-speed droplet impact onto a surface

The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-01, Vol.36 (1)
Main Author: Weigand, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Weigand, Bernhard
description The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.
doi_str_mv 10.1063/5.0186883
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919906048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919906048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPwDS0wgpZzjxh8jqiggVTAAs-XaTusqiYPtDP33pLQzw-luePTq9CJ0S2BGgNHHagZEMCHoGZoQELLgjLHzw82hYIySS3SV0g4AqCzZBL1_-nZodPahw7qz4-hmn73RDW6DdY3vNjjUeOs32yL1zllsY-gbl7Fve20yDl0OWOM0xFobd40uat0kd3PaU_S9fP5avBarj5e3xdOqMKXguSDCCqPntloLYlilATRnhjsCpS05pcySNeVr6SphzNwZB4Lxuqaj5mCkoVN0d8ztY_gZXMpqF4Y4_p5UKYmUwGAuRnV_VCaGlKKrVR99q-NeEVCHulSlTnWN9uFok_H5r49_8C-caGmu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919906048</pqid></control><display><type>article</type><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Weigand, Bernhard</creator><creatorcontrib>Weigand, Bernhard</creatorcontrib><description>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0186883</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cavitation ; Compressibility effects ; Droplets ; Fluid dynamics ; Impact loads ; Impact velocity ; Industrial applications ; Low pressure ; Mathematical analysis ; Mathematical models ; Modelling ; Rarefaction ; Solid surfaces</subject><ispartof>Physics of fluids (1994), 2024-01, Vol.36 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</cites><orcidid>0000-0002-1469-079X ; 0000-0001-8456-1865 ; 0000-0002-8430-6917 ; 0009-0003-8322-5976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1554,27905,27906</link.rule.ids></links><search><creatorcontrib>Weigand, Bernhard</creatorcontrib><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><title>Physics of fluids (1994)</title><description>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</description><subject>Cavitation</subject><subject>Compressibility effects</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Impact loads</subject><subject>Impact velocity</subject><subject>Industrial applications</subject><subject>Low pressure</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Rarefaction</subject><subject>Solid surfaces</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPwDS0wgpZzjxh8jqiggVTAAs-XaTusqiYPtDP33pLQzw-luePTq9CJ0S2BGgNHHagZEMCHoGZoQELLgjLHzw82hYIySS3SV0g4AqCzZBL1_-nZodPahw7qz4-hmn73RDW6DdY3vNjjUeOs32yL1zllsY-gbl7Fve20yDl0OWOM0xFobd40uat0kd3PaU_S9fP5avBarj5e3xdOqMKXguSDCCqPntloLYlilATRnhjsCpS05pcySNeVr6SphzNwZB4Lxuqaj5mCkoVN0d8ztY_gZXMpqF4Y4_p5UKYmUwGAuRnV_VCaGlKKrVR99q-NeEVCHulSlTnWN9uFok_H5r49_8C-caGmu</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Weigand, Bernhard</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1469-079X</orcidid><orcidid>https://orcid.org/0000-0001-8456-1865</orcidid><orcidid>https://orcid.org/0000-0002-8430-6917</orcidid><orcidid>https://orcid.org/0009-0003-8322-5976</orcidid></search><sort><creationdate>202401</creationdate><title>Simulation and analytical modeling of high-speed droplet impact onto a surface</title><author>Weigand, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cavitation</topic><topic>Compressibility effects</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Impact loads</topic><topic>Impact velocity</topic><topic>Industrial applications</topic><topic>Low pressure</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Rarefaction</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigand, Bernhard</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigand, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and analytical modeling of high-speed droplet impact onto a surface</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The fluid dynamics of liquid droplet impact on surfaces hold significant relevance to various industrial applications. However, high impact velocities introduce compressible effects, leading to material erosion. A gap in understanding and modeling these effects has motivated this study. We simulated droplet impacts on solid surfaces and proposed a new analytical model for impact pressure and droplet turning line, targeting at predictions for enhanced cavitation. The highly compressed liquid behind the droplet expands sideways, causing lateral jetting. As the droplet encounters a shock wave, it reflects as a rarefaction wave, leading to low-pressure zones within the droplet. These zones converge at the droplet's center, causing cavitation, which, upon collapse, induces another shock wave, contributing to erosion. Using the well-established model for the low-velocity impact shows a significant discrepancy. Hence, an analytical model for the turning line radius is introduced, incorporating the lateral jetting's characteristic length scale. Comparing our model with existing ones, our new model exhibits superior predictive accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0186883</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1469-079X</orcidid><orcidid>https://orcid.org/0000-0001-8456-1865</orcidid><orcidid>https://orcid.org/0000-0002-8430-6917</orcidid><orcidid>https://orcid.org/0009-0003-8322-5976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-01, Vol.36 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2919906048
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Cavitation
Compressibility effects
Droplets
Fluid dynamics
Impact loads
Impact velocity
Industrial applications
Low pressure
Mathematical analysis
Mathematical models
Modelling
Rarefaction
Solid surfaces
title Simulation and analytical modeling of high-speed droplet impact onto a surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20analytical%20modeling%20of%20high-speed%20droplet%20impact%20onto%20a%20surface&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Weigand,%20Bernhard&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0186883&rft_dat=%3Cproquest_cross%3E2919906048%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-18d8ca4d5b81c65a00a76c7e102d27336d1b37b9e58cc4ece0867ff381c70c9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919906048&rft_id=info:pmid/&rfr_iscdi=true