Loading…

Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys

From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Scott Ellis Perkins, McGill, Peter, Dawson, William, Abrams, Natasha S, Lam, Casey Y, Ming-Feng, Ho, Lu, Jessica R, Bird, Simeon, Pruett, Kerianne, Golovich, Nathan, Chapline, George
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Scott Ellis Perkins
McGill, Peter
Dawson, William
Abrams, Natasha S
Lam, Casey Y
Ming-Feng, Ho
Lu, Jessica R
Bird, Simeon
Pruett, Kerianne
Golovich, Nathan
Chapline, George
description From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens-class of any single event. We investigate this method's effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of \(30 M_{\odot}\). On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to \({\approx}25\)\%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.
doi_str_mv 10.48550/arxiv.2310.03943
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2919916436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919916436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-b491578cc108ae842ed521ec5a374a63a1f8e140b93224c835293a5ace3a338c3</originalsourceid><addsrcrecordid>eNotjk9PAjEUxBsTEwnyAbw18bzY9rW77VHxDyYQSeBOHvXBLi672HZRvr1r9DTJZH4zw9iNFGNtjRF3GL6r01hBbwhwGi7YQAHIzGqlrtgoxr0QQuWFMgYGbPFYRWoSNru6anY8lcQfavQffNrWxOcYI18eyafQHfhXlUq-KNvUHiiFyvN55UMfa-IvuuzCic7xml1usY40-tchWz0_rSbTbPb28jq5n2VoVJ5ttJOmsN5LYZH6a_RulCRvEAqNOaDcWpJabBwopb0FoxygQU-AANbDkN3-1R5D-9lRTOt924WmX1wrJ52TuYYcfgANClBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919916436</pqid></control><display><type>article</type><title>Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Scott Ellis Perkins ; McGill, Peter ; Dawson, William ; Abrams, Natasha S ; Lam, Casey Y ; Ming-Feng, Ho ; Lu, Jessica R ; Bird, Simeon ; Pruett, Kerianne ; Golovich, Nathan ; Chapline, George</creator><creatorcontrib>Scott Ellis Perkins ; McGill, Peter ; Dawson, William ; Abrams, Natasha S ; Lam, Casey Y ; Ming-Feng, Ho ; Lu, Jessica R ; Bird, Simeon ; Pruett, Kerianne ; Golovich, Nathan ; Chapline, George</creatorcontrib><description>From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens-class of any single event. We investigate this method's effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of \(30 M_{\odot}\). On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to \({\approx}25\)\%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2310.03943</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomy ; Black holes ; Compact galaxies ; Dark matter ; Lenses ; Microlenses ; Nuclear physics ; Photometry ; Simulation ; Uncertainty</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919916436?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Scott Ellis Perkins</creatorcontrib><creatorcontrib>McGill, Peter</creatorcontrib><creatorcontrib>Dawson, William</creatorcontrib><creatorcontrib>Abrams, Natasha S</creatorcontrib><creatorcontrib>Lam, Casey Y</creatorcontrib><creatorcontrib>Ming-Feng, Ho</creatorcontrib><creatorcontrib>Lu, Jessica R</creatorcontrib><creatorcontrib>Bird, Simeon</creatorcontrib><creatorcontrib>Pruett, Kerianne</creatorcontrib><creatorcontrib>Golovich, Nathan</creatorcontrib><creatorcontrib>Chapline, George</creatorcontrib><title>Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys</title><title>arXiv.org</title><description>From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens-class of any single event. We investigate this method's effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of \(30 M_{\odot}\). On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to \({\approx}25\)\%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.</description><subject>Astronomy</subject><subject>Black holes</subject><subject>Compact galaxies</subject><subject>Dark matter</subject><subject>Lenses</subject><subject>Microlenses</subject><subject>Nuclear physics</subject><subject>Photometry</subject><subject>Simulation</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk9PAjEUxBsTEwnyAbw18bzY9rW77VHxDyYQSeBOHvXBLi672HZRvr1r9DTJZH4zw9iNFGNtjRF3GL6r01hBbwhwGi7YQAHIzGqlrtgoxr0QQuWFMgYGbPFYRWoSNru6anY8lcQfavQffNrWxOcYI18eyafQHfhXlUq-KNvUHiiFyvN55UMfa-IvuuzCic7xml1usY40-tchWz0_rSbTbPb28jq5n2VoVJ5ttJOmsN5LYZH6a_RulCRvEAqNOaDcWpJabBwopb0FoxygQU-AANbDkN3-1R5D-9lRTOt924WmX1wrJ52TuYYcfgANClBk</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Scott Ellis Perkins</creator><creator>McGill, Peter</creator><creator>Dawson, William</creator><creator>Abrams, Natasha S</creator><creator>Lam, Casey Y</creator><creator>Ming-Feng, Ho</creator><creator>Lu, Jessica R</creator><creator>Bird, Simeon</creator><creator>Pruett, Kerianne</creator><creator>Golovich, Nathan</creator><creator>Chapline, George</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231005</creationdate><title>Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys</title><author>Scott Ellis Perkins ; McGill, Peter ; Dawson, William ; Abrams, Natasha S ; Lam, Casey Y ; Ming-Feng, Ho ; Lu, Jessica R ; Bird, Simeon ; Pruett, Kerianne ; Golovich, Nathan ; Chapline, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-b491578cc108ae842ed521ec5a374a63a1f8e140b93224c835293a5ace3a338c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomy</topic><topic>Black holes</topic><topic>Compact galaxies</topic><topic>Dark matter</topic><topic>Lenses</topic><topic>Microlenses</topic><topic>Nuclear physics</topic><topic>Photometry</topic><topic>Simulation</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott Ellis Perkins</creatorcontrib><creatorcontrib>McGill, Peter</creatorcontrib><creatorcontrib>Dawson, William</creatorcontrib><creatorcontrib>Abrams, Natasha S</creatorcontrib><creatorcontrib>Lam, Casey Y</creatorcontrib><creatorcontrib>Ming-Feng, Ho</creatorcontrib><creatorcontrib>Lu, Jessica R</creatorcontrib><creatorcontrib>Bird, Simeon</creatorcontrib><creatorcontrib>Pruett, Kerianne</creatorcontrib><creatorcontrib>Golovich, Nathan</creatorcontrib><creatorcontrib>Chapline, George</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott Ellis Perkins</au><au>McGill, Peter</au><au>Dawson, William</au><au>Abrams, Natasha S</au><au>Lam, Casey Y</au><au>Ming-Feng, Ho</au><au>Lu, Jessica R</au><au>Bird, Simeon</au><au>Pruett, Kerianne</au><au>Golovich, Nathan</au><au>Chapline, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys</atitle><jtitle>arXiv.org</jtitle><date>2023-10-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens-class of any single event. We investigate this method's effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of \(30 M_{\odot}\). On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to \({\approx}25\)\%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2310.03943</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2919916436
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Astronomy
Black holes
Compact galaxies
Dark matter
Lenses
Microlenses
Nuclear physics
Photometry
Simulation
Uncertainty
title Disentangling the Black Hole Mass Spectrum with Photometric Microlensing Surveys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20the%20Black%20Hole%20Mass%20Spectrum%20with%20Photometric%20Microlensing%20Surveys&rft.jtitle=arXiv.org&rft.au=Scott%20Ellis%20Perkins&rft.date=2023-10-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2310.03943&rft_dat=%3Cproquest%3E2919916436%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-b491578cc108ae842ed521ec5a374a63a1f8e140b93224c835293a5ace3a338c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919916436&rft_id=info:pmid/&rfr_iscdi=true