Loading…

Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks

Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provide...

Full description

Saved in:
Bibliographic Details
Published in:TEM Journal 2023-08, Vol.12 (3), p.1490-1496
Main Authors: Yassin, Ahmad Ihsan, Mohd Shariff, Khairul Khaizi, Kechik, Mustapha Awang, Ali, Adli Md, Megat Amin, Megat Syahirul
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3
cites
container_end_page 1496
container_issue 3
container_start_page 1490
container_title TEM Journal
container_volume 12
creator Yassin, Ahmad Ihsan
Mohd Shariff, Khairul Khaizi
Kechik, Mustapha Awang
Ali, Adli Md
Megat Amin, Megat Syahirul
description Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.
doi_str_mv 10.18421/TEM123-29
format article
fullrecord <record><control><sourceid>ceeol_proqu</sourceid><recordid>TN_cdi_proquest_journals_2919995269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>1168461</ceeol_id><sourcerecordid>1168461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxRdRsNRevAsBb8JqJsl-5FhKq0KrB1evS5rO2tTtpiZZSv97oxU9vYH5zZvHS5JLoLdQCgZ31XQBjKdMniQDxqBIS8756d9M5Xky8n5DKYUiFzwTg2Q91rb3wWjyhmujWySTVnlvGqNVMLYjr95072SBbTpz-Nljpw9khir0Dj3Zm7AmcxuBl7V1Ia3QbSO7te5AnrB3qo0S9tZ9-IvkrFGtx9GvDpNqNq0mD-n8-f5xMp6nmkMRUmhYzlTGKawQQapVyQoU2BRaq6LUgtIlFwplQSPUfC8pFyvI1DLPmNB8mFwfbXfOxrQ-1Bvbuy5-rJkEKWXGchmpmyOlnfXeYVPvnNkqd6iB1j9d1scu41GEr35hRNv--wHkpciBfwFYHnBX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919995269</pqid></control><display><type>article</type><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><source>Publicly Available Content Database</source><creator>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</creator><creatorcontrib>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</creatorcontrib><description>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</description><identifier>ISSN: 2217-8309</identifier><identifier>EISSN: 2217-8333</identifier><identifier>DOI: 10.18421/TEM123-29</identifier><language>eng</language><publisher>Novi Pazar: UIKTEN - Association for Information Communication Technology Education and Science</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Classification ; Deep learning ; Electronic information storage and retrieval ; Fourier transforms ; Machine learning ; Monitoring ; Motorcycles ; Neural networks ; Signal processing ; Social Informatics ; Sound ; Speech ; Vehicles</subject><ispartof>TEM Journal, 2023-08, Vol.12 (3), p.1490-1496</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919995269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Yassin, Ahmad Ihsan</creatorcontrib><creatorcontrib>Mohd Shariff, Khairul Khaizi</creatorcontrib><creatorcontrib>Kechik, Mustapha Awang</creatorcontrib><creatorcontrib>Ali, Adli Md</creatorcontrib><creatorcontrib>Megat Amin, Megat Syahirul</creatorcontrib><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><title>TEM Journal</title><addtitle>TEM Journal</addtitle><description>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Electronic information storage and retrieval</subject><subject>Fourier transforms</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Motorcycles</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Social Informatics</subject><subject>Sound</subject><subject>Speech</subject><subject>Vehicles</subject><issn>2217-8309</issn><issn>2217-8333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFkM1LAzEQxRdRsNRevAsBb8JqJsl-5FhKq0KrB1evS5rO2tTtpiZZSv97oxU9vYH5zZvHS5JLoLdQCgZ31XQBjKdMniQDxqBIS8756d9M5Xky8n5DKYUiFzwTg2Q91rb3wWjyhmujWySTVnlvGqNVMLYjr95072SBbTpz-Nljpw9khir0Dj3Zm7AmcxuBl7V1Ia3QbSO7te5AnrB3qo0S9tZ9-IvkrFGtx9GvDpNqNq0mD-n8-f5xMp6nmkMRUmhYzlTGKawQQapVyQoU2BRaq6LUgtIlFwplQSPUfC8pFyvI1DLPmNB8mFwfbXfOxrQ-1Bvbuy5-rJkEKWXGchmpmyOlnfXeYVPvnNkqd6iB1j9d1scu41GEr35hRNv--wHkpciBfwFYHnBX</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yassin, Ahmad Ihsan</creator><creator>Mohd Shariff, Khairul Khaizi</creator><creator>Kechik, Mustapha Awang</creator><creator>Ali, Adli Md</creator><creator>Megat Amin, Megat Syahirul</creator><general>UIKTEN - Association for Information Communication Technology Education and Science</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><author>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Electronic information storage and retrieval</topic><topic>Fourier transforms</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Motorcycles</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Social Informatics</topic><topic>Sound</topic><topic>Speech</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yassin, Ahmad Ihsan</creatorcontrib><creatorcontrib>Mohd Shariff, Khairul Khaizi</creatorcontrib><creatorcontrib>Kechik, Mustapha Awang</creatorcontrib><creatorcontrib>Ali, Adli Md</creatorcontrib><creatorcontrib>Megat Amin, Megat Syahirul</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>TEM Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yassin, Ahmad Ihsan</au><au>Mohd Shariff, Khairul Khaizi</au><au>Kechik, Mustapha Awang</au><au>Ali, Adli Md</au><au>Megat Amin, Megat Syahirul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</atitle><jtitle>TEM Journal</jtitle><addtitle>TEM Journal</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>1490</spage><epage>1496</epage><pages>1490-1496</pages><issn>2217-8309</issn><eissn>2217-8333</eissn><abstract>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</abstract><cop>Novi Pazar</cop><pub>UIKTEN - Association for Information Communication Technology Education and Science</pub><doi>10.18421/TEM123-29</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2217-8309
ispartof TEM Journal, 2023-08, Vol.12 (3), p.1490-1496
issn 2217-8309
2217-8333
language eng
recordid cdi_proquest_journals_2919995269
source Publicly Available Content Database
subjects Accuracy
Acoustics
Algorithms
Classification
Deep learning
Electronic information storage and retrieval
Fourier transforms
Machine learning
Monitoring
Motorcycles
Neural networks
Signal processing
Social Informatics
Sound
Speech
Vehicles
title Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Vehicle%20Classification%20Using%20Mel-Frequency%20Features%20with%20Long%20Short-Term%20Memory%20Neural%20Networks&rft.jtitle=TEM%20Journal&rft.au=Yassin,%20Ahmad%20Ihsan&rft.date=2023-08-01&rft.volume=12&rft.issue=3&rft.spage=1490&rft.epage=1496&rft.pages=1490-1496&rft.issn=2217-8309&rft.eissn=2217-8333&rft_id=info:doi/10.18421/TEM123-29&rft_dat=%3Cceeol_proqu%3E1168461%3C/ceeol_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919995269&rft_id=info:pmid/&rft_ceeol_id=1168461&rfr_iscdi=true