Loading…
Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks
Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provide...
Saved in:
Published in: | TEM Journal 2023-08, Vol.12 (3), p.1490-1496 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3 |
---|---|
cites | |
container_end_page | 1496 |
container_issue | 3 |
container_start_page | 1490 |
container_title | TEM Journal |
container_volume | 12 |
creator | Yassin, Ahmad Ihsan Mohd Shariff, Khairul Khaizi Kechik, Mustapha Awang Ali, Adli Md Megat Amin, Megat Syahirul |
description | Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring. |
doi_str_mv | 10.18421/TEM123-29 |
format | article |
fullrecord | <record><control><sourceid>ceeol_proqu</sourceid><recordid>TN_cdi_proquest_journals_2919995269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>1168461</ceeol_id><sourcerecordid>1168461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxRdRsNRevAsBb8JqJsl-5FhKq0KrB1evS5rO2tTtpiZZSv97oxU9vYH5zZvHS5JLoLdQCgZ31XQBjKdMniQDxqBIS8756d9M5Xky8n5DKYUiFzwTg2Q91rb3wWjyhmujWySTVnlvGqNVMLYjr95072SBbTpz-Nljpw9khir0Dj3Zm7AmcxuBl7V1Ia3QbSO7te5AnrB3qo0S9tZ9-IvkrFGtx9GvDpNqNq0mD-n8-f5xMp6nmkMRUmhYzlTGKawQQapVyQoU2BRaq6LUgtIlFwplQSPUfC8pFyvI1DLPmNB8mFwfbXfOxrQ-1Bvbuy5-rJkEKWXGchmpmyOlnfXeYVPvnNkqd6iB1j9d1scu41GEr35hRNv--wHkpciBfwFYHnBX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919995269</pqid></control><display><type>article</type><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><source>Publicly Available Content Database</source><creator>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</creator><creatorcontrib>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</creatorcontrib><description>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</description><identifier>ISSN: 2217-8309</identifier><identifier>EISSN: 2217-8333</identifier><identifier>DOI: 10.18421/TEM123-29</identifier><language>eng</language><publisher>Novi Pazar: UIKTEN - Association for Information Communication Technology Education and Science</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Classification ; Deep learning ; Electronic information storage and retrieval ; Fourier transforms ; Machine learning ; Monitoring ; Motorcycles ; Neural networks ; Signal processing ; Social Informatics ; Sound ; Speech ; Vehicles</subject><ispartof>TEM Journal, 2023-08, Vol.12 (3), p.1490-1496</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919995269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Yassin, Ahmad Ihsan</creatorcontrib><creatorcontrib>Mohd Shariff, Khairul Khaizi</creatorcontrib><creatorcontrib>Kechik, Mustapha Awang</creatorcontrib><creatorcontrib>Ali, Adli Md</creatorcontrib><creatorcontrib>Megat Amin, Megat Syahirul</creatorcontrib><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><title>TEM Journal</title><addtitle>TEM Journal</addtitle><description>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Electronic information storage and retrieval</subject><subject>Fourier transforms</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Motorcycles</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Social Informatics</subject><subject>Sound</subject><subject>Speech</subject><subject>Vehicles</subject><issn>2217-8309</issn><issn>2217-8333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFkM1LAzEQxRdRsNRevAsBb8JqJsl-5FhKq0KrB1evS5rO2tTtpiZZSv97oxU9vYH5zZvHS5JLoLdQCgZ31XQBjKdMniQDxqBIS8756d9M5Xky8n5DKYUiFzwTg2Q91rb3wWjyhmujWySTVnlvGqNVMLYjr95072SBbTpz-Nljpw9khir0Dj3Zm7AmcxuBl7V1Ia3QbSO7te5AnrB3qo0S9tZ9-IvkrFGtx9GvDpNqNq0mD-n8-f5xMp6nmkMRUmhYzlTGKawQQapVyQoU2BRaq6LUgtIlFwplQSPUfC8pFyvI1DLPmNB8mFwfbXfOxrQ-1Bvbuy5-rJkEKWXGchmpmyOlnfXeYVPvnNkqd6iB1j9d1scu41GEr35hRNv--wHkpciBfwFYHnBX</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yassin, Ahmad Ihsan</creator><creator>Mohd Shariff, Khairul Khaizi</creator><creator>Kechik, Mustapha Awang</creator><creator>Ali, Adli Md</creator><creator>Megat Amin, Megat Syahirul</creator><general>UIKTEN - Association for Information Communication Technology Education and Science</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</title><author>Yassin, Ahmad Ihsan ; Mohd Shariff, Khairul Khaizi ; Kechik, Mustapha Awang ; Ali, Adli Md ; Megat Amin, Megat Syahirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Electronic information storage and retrieval</topic><topic>Fourier transforms</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Motorcycles</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Social Informatics</topic><topic>Sound</topic><topic>Speech</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yassin, Ahmad Ihsan</creatorcontrib><creatorcontrib>Mohd Shariff, Khairul Khaizi</creatorcontrib><creatorcontrib>Kechik, Mustapha Awang</creatorcontrib><creatorcontrib>Ali, Adli Md</creatorcontrib><creatorcontrib>Megat Amin, Megat Syahirul</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>TEM Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yassin, Ahmad Ihsan</au><au>Mohd Shariff, Khairul Khaizi</au><au>Kechik, Mustapha Awang</au><au>Ali, Adli Md</au><au>Megat Amin, Megat Syahirul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks</atitle><jtitle>TEM Journal</jtitle><addtitle>TEM Journal</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>1490</spage><epage>1496</epage><pages>1490-1496</pages><issn>2217-8309</issn><eissn>2217-8333</eissn><abstract>Monitoring vehicle traffic at a large scale is a challenging task for authorities, particularly considering the high cost of traffic sensors such as vision cameras. To meet the growing demand for more accurate traffic monitoring, the use of traffic sounds has become a popular approach, as it provides insight into the types of traffic present. This paper reports on an approach to vehicle classification based on acoustic signals, using the Mel-Frequency Cepstral Coefficients (MFCC) and the Long Short-Term Memory (LSTM) networks. This study exhibited classification accuracy scores of 82-86.2% across four vehicle categories: motorcycle, car, truck, and no traffic. The results demonstrated that large-scale, low-cost acoustic processing can be effectively used for vehicle monitoring.</abstract><cop>Novi Pazar</cop><pub>UIKTEN - Association for Information Communication Technology Education and Science</pub><doi>10.18421/TEM123-29</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2217-8309 |
ispartof | TEM Journal, 2023-08, Vol.12 (3), p.1490-1496 |
issn | 2217-8309 2217-8333 |
language | eng |
recordid | cdi_proquest_journals_2919995269 |
source | Publicly Available Content Database |
subjects | Accuracy Acoustics Algorithms Classification Deep learning Electronic information storage and retrieval Fourier transforms Machine learning Monitoring Motorcycles Neural networks Signal processing Social Informatics Sound Speech Vehicles |
title | Acoustic Vehicle Classification Using Mel-Frequency Features with Long Short-Term Memory Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Vehicle%20Classification%20Using%20Mel-Frequency%20Features%20with%20Long%20Short-Term%20Memory%20Neural%20Networks&rft.jtitle=TEM%20Journal&rft.au=Yassin,%20Ahmad%20Ihsan&rft.date=2023-08-01&rft.volume=12&rft.issue=3&rft.spage=1490&rft.epage=1496&rft.pages=1490-1496&rft.issn=2217-8309&rft.eissn=2217-8333&rft_id=info:doi/10.18421/TEM123-29&rft_dat=%3Cceeol_proqu%3E1168461%3C/ceeol_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-1f262a5301dee19ad827e4ef7cca78c400b34ae970a53f827e034d15ab6524c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919995269&rft_id=info:pmid/&rft_ceeol_id=1168461&rfr_iscdi=true |