Loading…
Potential Role of Silicon in Plants Against Biotic and Abiotic Stresses
In climate change scenarios, biotic and abiotic stresses are among the serious environmental strains that limit agricultural productivity worldwide. Silicon (Si) compounds are now getting much attention in agriculture as a result of explorations into their beneficial effects on plant growth, and dev...
Saved in:
Published in: | SILICON 2023-05, Vol.15 (7), p.3283-3303 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In climate change scenarios, biotic and abiotic stresses are among the serious environmental strains that limit agricultural productivity worldwide. Silicon (Si) compounds are now getting much attention in agriculture as a result of explorations into their beneficial effects on plant growth, and development under adverse environments. This review seeks to understand the roles of transport pathways, the up- and down-regulation of biochemical responses, and transporter genes in Si’s effects. Exogenous application of Si enhances plant antioxidant defenses and decreases oxidative stress by limiting production of reactive oxygen species (ROS). Biofortification is one of the best techniques to reduce biotic and abiotic stresses by enhancing a plant’s capacity to accumulate Si. Identifying the novel genes involved in Si transport and modulating their expression level through genetic engineering is one option being considered to prevent biotic and abiotic damage to crop, and to reduce the applications of toxic pesticides, herbicides, and fungicides. |
---|---|
ISSN: | 1876-990X 1876-9918 |
DOI: | 10.1007/s12633-022-02254-w |