Loading…

Neurocomputational identification of order parameters in gerontology

The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that...

Full description

Saved in:
Bibliographic Details
Published in:Advances in gerontology 2016, Vol.6 (1), p.24-28
Main Authors: Eskov, V. M., Eskov, V. V., Filatova, O. E., Khadartsev, A. A., Sinenko, D. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23
cites cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23
container_end_page 28
container_issue 1
container_start_page 24
container_title Advances in gerontology
container_volume 6
creator Eskov, V. M.
Eskov, V. V.
Filatova, O. E.
Khadartsev, A. A.
Sinenko, D. V.
description The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features, x i , could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).
doi_str_mv 10.1134/S2079057016010033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920057029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920057029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S58D6kTg-ovIoUgUH4Bw5zrpKlcTBdg79exKK4IDYy65GM6OdIeSSwjWlXNy8MpAKMgk0BwrA-QlZzFAKWaFOf24J52QVwh6myYBJgAW5e8bRO-O6YYw6Nq7XbdLU2MfGNuYLSJxNnK_RJ4P2usOIPiRNn-zQuz661u0OF-TM6jbg6nsvyfvD_dt6k25fHp_Wt9vUcJrHtMBMcAUMkInaSmt4BYAgtKm0VZhZVcm8KvKsFlWOVFgwhbJGcaYMCsP4klwdfQfvPkYMsdy70U8vh5IpBnNCpiYWPbKMdyF4tOXgm077Q0mhnPsq__Q1adhREyZuP0X7df5f9An_WGzN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920057029</pqid></control><display><type>article</type><title>Neurocomputational identification of order parameters in gerontology</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</creator><creatorcontrib>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</creatorcontrib><description>The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features, x i , could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</description><identifier>ISSN: 2079-0570</identifier><identifier>EISSN: 2079-0589</identifier><identifier>DOI: 10.1134/S2079057016010033</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Age groups ; Classification ; Geriatrics/Gerontology ; Gerontology ; Medical research ; Medicine ; Medicine &amp; Public Health ; Native peoples ; Nervous system ; Neural networks</subject><ispartof>Advances in gerontology, 2016, Vol.6 (1), p.24-28</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Pleiades Publishing, Ltd. 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</citedby><cites>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Eskov, V. M.</creatorcontrib><creatorcontrib>Eskov, V. V.</creatorcontrib><creatorcontrib>Filatova, O. E.</creatorcontrib><creatorcontrib>Khadartsev, A. A.</creatorcontrib><creatorcontrib>Sinenko, D. V.</creatorcontrib><title>Neurocomputational identification of order parameters in gerontology</title><title>Advances in gerontology</title><addtitle>Adv Gerontol</addtitle><description>The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features, x i , could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</description><subject>Age groups</subject><subject>Classification</subject><subject>Geriatrics/Gerontology</subject><subject>Gerontology</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Native peoples</subject><subject>Nervous system</subject><subject>Neural networks</subject><issn>2079-0570</issn><issn>2079-0589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S58D6kTg-ovIoUgUH4Bw5zrpKlcTBdg79exKK4IDYy65GM6OdIeSSwjWlXNy8MpAKMgk0BwrA-QlZzFAKWaFOf24J52QVwh6myYBJgAW5e8bRO-O6YYw6Nq7XbdLU2MfGNuYLSJxNnK_RJ4P2usOIPiRNn-zQuz661u0OF-TM6jbg6nsvyfvD_dt6k25fHp_Wt9vUcJrHtMBMcAUMkInaSmt4BYAgtKm0VZhZVcm8KvKsFlWOVFgwhbJGcaYMCsP4klwdfQfvPkYMsdy70U8vh5IpBnNCpiYWPbKMdyF4tOXgm077Q0mhnPsq__Q1adhREyZuP0X7df5f9An_WGzN</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Eskov, V. M.</creator><creator>Eskov, V. V.</creator><creator>Filatova, O. E.</creator><creator>Khadartsev, A. A.</creator><creator>Sinenko, D. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2016</creationdate><title>Neurocomputational identification of order parameters in gerontology</title><author>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Age groups</topic><topic>Classification</topic><topic>Geriatrics/Gerontology</topic><topic>Gerontology</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Native peoples</topic><topic>Nervous system</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskov, V. M.</creatorcontrib><creatorcontrib>Eskov, V. V.</creatorcontrib><creatorcontrib>Filatova, O. E.</creatorcontrib><creatorcontrib>Khadartsev, A. A.</creatorcontrib><creatorcontrib>Sinenko, D. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Advances in gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskov, V. M.</au><au>Eskov, V. V.</au><au>Filatova, O. E.</au><au>Khadartsev, A. A.</au><au>Sinenko, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurocomputational identification of order parameters in gerontology</atitle><jtitle>Advances in gerontology</jtitle><stitle>Adv Gerontol</stitle><date>2016</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24</spage><epage>28</epage><pages>24-28</pages><issn>2079-0570</issn><eissn>2079-0589</eissn><abstract>The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features, x i , could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2079057016010033</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2079-0570
ispartof Advances in gerontology, 2016, Vol.6 (1), p.24-28
issn 2079-0570
2079-0589
language eng
recordid cdi_proquest_journals_2920057029
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Age groups
Classification
Geriatrics/Gerontology
Gerontology
Medical research
Medicine
Medicine & Public Health
Native peoples
Nervous system
Neural networks
title Neurocomputational identification of order parameters in gerontology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurocomputational%20identification%20of%20order%20parameters%20in%20gerontology&rft.jtitle=Advances%20in%20gerontology&rft.au=Eskov,%20V.%20M.&rft.date=2016&rft.volume=6&rft.issue=1&rft.spage=24&rft.epage=28&rft.pages=24-28&rft.issn=2079-0570&rft.eissn=2079-0589&rft_id=info:doi/10.1134/S2079057016010033&rft_dat=%3Cproquest_cross%3E2920057029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920057029&rft_id=info:pmid/&rfr_iscdi=true