Loading…
Neurocomputational identification of order parameters in gerontology
The fallacy of using a neuroemulator only once or with a small number of iterations ( p ≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that...
Saved in:
Published in: | Advances in gerontology 2016, Vol.6 (1), p.24-28 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23 |
container_end_page | 28 |
container_issue | 1 |
container_start_page | 24 |
container_title | Advances in gerontology |
container_volume | 6 |
creator | Eskov, V. M. Eskov, V. V. Filatova, O. E. Khadartsev, A. A. Sinenko, D. V. |
description | The fallacy of using a neuroemulator only once or with a small number of iterations (
p
≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features,
x
i
, could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology). |
doi_str_mv | 10.1134/S2079057016010033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920057029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920057029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S58D6kTg-ovIoUgUH4Bw5zrpKlcTBdg79exKK4IDYy65GM6OdIeSSwjWlXNy8MpAKMgk0BwrA-QlZzFAKWaFOf24J52QVwh6myYBJgAW5e8bRO-O6YYw6Nq7XbdLU2MfGNuYLSJxNnK_RJ4P2usOIPiRNn-zQuz661u0OF-TM6jbg6nsvyfvD_dt6k25fHp_Wt9vUcJrHtMBMcAUMkInaSmt4BYAgtKm0VZhZVcm8KvKsFlWOVFgwhbJGcaYMCsP4klwdfQfvPkYMsdy70U8vh5IpBnNCpiYWPbKMdyF4tOXgm077Q0mhnPsq__Q1adhREyZuP0X7df5f9An_WGzN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920057029</pqid></control><display><type>article</type><title>Neurocomputational identification of order parameters in gerontology</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</creator><creatorcontrib>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</creatorcontrib><description>The fallacy of using a neuroemulator only once or with a small number of iterations (
p
≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features,
x
i
, could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</description><identifier>ISSN: 2079-0570</identifier><identifier>EISSN: 2079-0589</identifier><identifier>DOI: 10.1134/S2079057016010033</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Age groups ; Classification ; Geriatrics/Gerontology ; Gerontology ; Medical research ; Medicine ; Medicine & Public Health ; Native peoples ; Nervous system ; Neural networks</subject><ispartof>Advances in gerontology, 2016, Vol.6 (1), p.24-28</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Pleiades Publishing, Ltd. 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</citedby><cites>FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Eskov, V. M.</creatorcontrib><creatorcontrib>Eskov, V. V.</creatorcontrib><creatorcontrib>Filatova, O. E.</creatorcontrib><creatorcontrib>Khadartsev, A. A.</creatorcontrib><creatorcontrib>Sinenko, D. V.</creatorcontrib><title>Neurocomputational identification of order parameters in gerontology</title><title>Advances in gerontology</title><addtitle>Adv Gerontol</addtitle><description>The fallacy of using a neuroemulator only once or with a small number of iterations (
p
≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features,
x
i
, could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</description><subject>Age groups</subject><subject>Classification</subject><subject>Geriatrics/Gerontology</subject><subject>Gerontology</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Native peoples</subject><subject>Nervous system</subject><subject>Neural networks</subject><issn>2079-0570</issn><issn>2079-0589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S58D6kTg-ovIoUgUH4Bw5zrpKlcTBdg79exKK4IDYy65GM6OdIeSSwjWlXNy8MpAKMgk0BwrA-QlZzFAKWaFOf24J52QVwh6myYBJgAW5e8bRO-O6YYw6Nq7XbdLU2MfGNuYLSJxNnK_RJ4P2usOIPiRNn-zQuz661u0OF-TM6jbg6nsvyfvD_dt6k25fHp_Wt9vUcJrHtMBMcAUMkInaSmt4BYAgtKm0VZhZVcm8KvKsFlWOVFgwhbJGcaYMCsP4klwdfQfvPkYMsdy70U8vh5IpBnNCpiYWPbKMdyF4tOXgm077Q0mhnPsq__Q1adhREyZuP0X7df5f9An_WGzN</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Eskov, V. M.</creator><creator>Eskov, V. V.</creator><creator>Filatova, O. E.</creator><creator>Khadartsev, A. A.</creator><creator>Sinenko, D. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2016</creationdate><title>Neurocomputational identification of order parameters in gerontology</title><author>Eskov, V. M. ; Eskov, V. V. ; Filatova, O. E. ; Khadartsev, A. A. ; Sinenko, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Age groups</topic><topic>Classification</topic><topic>Geriatrics/Gerontology</topic><topic>Gerontology</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Native peoples</topic><topic>Nervous system</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskov, V. M.</creatorcontrib><creatorcontrib>Eskov, V. V.</creatorcontrib><creatorcontrib>Filatova, O. E.</creatorcontrib><creatorcontrib>Khadartsev, A. A.</creatorcontrib><creatorcontrib>Sinenko, D. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Advances in gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskov, V. M.</au><au>Eskov, V. V.</au><au>Filatova, O. E.</au><au>Khadartsev, A. A.</au><au>Sinenko, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurocomputational identification of order parameters in gerontology</atitle><jtitle>Advances in gerontology</jtitle><stitle>Adv Gerontol</stitle><date>2016</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24</spage><epage>28</epage><pages>24-28</pages><issn>2079-0570</issn><eissn>2079-0589</eissn><abstract>The fallacy of using a neuroemulator only once or with a small number of iterations (
p
≤ 50) to solve the group-separation problem (a binary classification problem) in a five-dimensional phase space has been demonstrated using the example of the parameters of five active components (of the 14 that were registered) of the state vector of the cardiorespiratory system in Khanty (indigenous people of Yugra, Russia) women from three age groups. The necessity of repeating the neuroemulator-based solution of the binary classification problem at least 1000 times has been demonstrated: in this case, the most significant diagnostic features,
x
i
, could be identified with a precision of two significant fraction digits that are most relevant for the diagnostics of the aging rate (finding a solution of the system-synthesis problem in gerontology).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2079057016010033</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-0570 |
ispartof | Advances in gerontology, 2016, Vol.6 (1), p.24-28 |
issn | 2079-0570 2079-0589 |
language | eng |
recordid | cdi_proquest_journals_2920057029 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Age groups Classification Geriatrics/Gerontology Gerontology Medical research Medicine Medicine & Public Health Native peoples Nervous system Neural networks |
title | Neurocomputational identification of order parameters in gerontology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurocomputational%20identification%20of%20order%20parameters%20in%20gerontology&rft.jtitle=Advances%20in%20gerontology&rft.au=Eskov,%20V.%20M.&rft.date=2016&rft.volume=6&rft.issue=1&rft.spage=24&rft.epage=28&rft.pages=24-28&rft.issn=2079-0570&rft.eissn=2079-0589&rft_id=info:doi/10.1134/S2079057016010033&rft_dat=%3Cproquest_cross%3E2920057029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8e5439020e24df7fc3b00e04acbaf9e5f9b76b865d4b6e14f0c89fc9329ce4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920057029&rft_id=info:pmid/&rfr_iscdi=true |