Loading…

Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices

A novel reduced power with enhanced speed (RPES) technique for Static Random Access Memory (SRAM) topologies using Carbon Nano Tube Field Effect Transistors (CNTFETs) instead of traditional MOSFETs which is in demand for edge AI devices, energy efficient deep neural networks, smart wearable devices...

Full description

Saved in:
Bibliographic Details
Published in:SILICON 2022-09, Vol.14 (14), p.8815-8830
Main Authors: Alekhya, Y., Nanda, Umakanta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3
cites cdi_FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3
container_end_page 8830
container_issue 14
container_start_page 8815
container_title SILICON
container_volume 14
creator Alekhya, Y.
Nanda, Umakanta
description A novel reduced power with enhanced speed (RPES) technique for Static Random Access Memory (SRAM) topologies using Carbon Nano Tube Field Effect Transistors (CNTFETs) instead of traditional MOSFETs which is in demand for edge AI devices, energy efficient deep neural networks, smart wearable devices and high-speed era is proposed in this paper. This work reduces propagation delay and sub-threshold leakage current using RPES technique with a power supply of 0.9V. The performance and power delay product (PDP) of 6T, 8T and 10T SRAM cells is analysed for CNTFET based RPES technique at 45nm technology. Simulated results using Stanford CNTFET model shows improvement in PDP of proposed 6T SRAM cell by 66% compared to Conv6T and 27% compared to Ternary 4TSTI 6T SRAM. Conv 8T and Diff 8T are implemented using RPES technique which shows improvement by 40.9% and 74.3% respectively. Among SE10T and Diff 10T topologies, Diff 10T has better PDP when implemented using RPES technique. All SRAM cells mentioned are analyzed for various high-k dielectric materials, oxide thickness and pitch values of CNTFET and best fitting results are proposed for SRAM cells.
doi_str_mv 10.1007/s12633-021-01589-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920163169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920163169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bLPJsa5bLVSFWsFbSNPJsqXu1mRb6Lc3uqI35zJzeO8N74fQJaPXjNL8JjIuhSCUM0LZWGlCT9CAqVwSrZk6_b3p2zkaxbihaQTPldQDtJg1B4hdXdmubhvcelw8LaflEt_aCGtcNhCqIy69r10NTYenNnb4ZTF5xAVstxH7NuByXQGezPAdHGoH8QKdebuNMPrZQ_SaAosHMn--nxWTOXGC6Y5wznQOaiXt2FKfMcuF9CAot2vQTuUCVto5xbjgY5s5T3OQTkmZ5WIlvPJiiK763F1oP_aphNm0-9Ckl4ZrTpkUTOqk4r3KhTbGAN7sQv1uw9Ewar7wmR6fSfjMNz5Dk0n0ppjETQXhL_of1yd8-2_b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920163169</pqid></control><display><type>article</type><title>Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices</title><source>Springer Nature</source><creator>Alekhya, Y. ; Nanda, Umakanta</creator><creatorcontrib>Alekhya, Y. ; Nanda, Umakanta</creatorcontrib><description>A novel reduced power with enhanced speed (RPES) technique for Static Random Access Memory (SRAM) topologies using Carbon Nano Tube Field Effect Transistors (CNTFETs) instead of traditional MOSFETs which is in demand for edge AI devices, energy efficient deep neural networks, smart wearable devices and high-speed era is proposed in this paper. This work reduces propagation delay and sub-threshold leakage current using RPES technique with a power supply of 0.9V. The performance and power delay product (PDP) of 6T, 8T and 10T SRAM cells is analysed for CNTFET based RPES technique at 45nm technology. Simulated results using Stanford CNTFET model shows improvement in PDP of proposed 6T SRAM cell by 66% compared to Conv6T and 27% compared to Ternary 4TSTI 6T SRAM. Conv 8T and Diff 8T are implemented using RPES technique which shows improvement by 40.9% and 74.3% respectively. Among SE10T and Diff 10T topologies, Diff 10T has better PDP when implemented using RPES technique. All SRAM cells mentioned are analyzed for various high-k dielectric materials, oxide thickness and pitch values of CNTFET and best fitting results are proposed for SRAM cells.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-021-01589-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Dielectrics ; Environmental Chemistry ; Field effect transistors ; Inorganic Chemistry ; Lasers ; Leakage current ; Materials Science ; Optical Devices ; Optics ; Original Paper ; Photonics ; Polymer Sciences ; Power management ; Random access memory ; Semiconductor devices ; Static random access memory ; Topology ; Wearable technology</subject><ispartof>SILICON, 2022-09, Vol.14 (14), p.8815-8830</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3</citedby><cites>FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3</cites><orcidid>0000-0003-4746-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alekhya, Y.</creatorcontrib><creatorcontrib>Nanda, Umakanta</creatorcontrib><title>Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices</title><title>SILICON</title><addtitle>Silicon</addtitle><description>A novel reduced power with enhanced speed (RPES) technique for Static Random Access Memory (SRAM) topologies using Carbon Nano Tube Field Effect Transistors (CNTFETs) instead of traditional MOSFETs which is in demand for edge AI devices, energy efficient deep neural networks, smart wearable devices and high-speed era is proposed in this paper. This work reduces propagation delay and sub-threshold leakage current using RPES technique with a power supply of 0.9V. The performance and power delay product (PDP) of 6T, 8T and 10T SRAM cells is analysed for CNTFET based RPES technique at 45nm technology. Simulated results using Stanford CNTFET model shows improvement in PDP of proposed 6T SRAM cell by 66% compared to Conv6T and 27% compared to Ternary 4TSTI 6T SRAM. Conv 8T and Diff 8T are implemented using RPES technique which shows improvement by 40.9% and 74.3% respectively. Among SE10T and Diff 10T topologies, Diff 10T has better PDP when implemented using RPES technique. All SRAM cells mentioned are analyzed for various high-k dielectric materials, oxide thickness and pitch values of CNTFET and best fitting results are proposed for SRAM cells.</description><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dielectrics</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Power management</subject><subject>Random access memory</subject><subject>Semiconductor devices</subject><subject>Static random access memory</subject><subject>Topology</subject><subject>Wearable technology</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bLPJsa5bLVSFWsFbSNPJsqXu1mRb6Lc3uqI35zJzeO8N74fQJaPXjNL8JjIuhSCUM0LZWGlCT9CAqVwSrZk6_b3p2zkaxbihaQTPldQDtJg1B4hdXdmubhvcelw8LaflEt_aCGtcNhCqIy69r10NTYenNnb4ZTF5xAVstxH7NuByXQGezPAdHGoH8QKdebuNMPrZQ_SaAosHMn--nxWTOXGC6Y5wznQOaiXt2FKfMcuF9CAot2vQTuUCVto5xbjgY5s5T3OQTkmZ5WIlvPJiiK763F1oP_aphNm0-9Ckl4ZrTpkUTOqk4r3KhTbGAN7sQv1uw9Ewar7wmR6fSfjMNz5Dk0n0ppjETQXhL_of1yd8-2_b</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Alekhya, Y.</creator><creator>Nanda, Umakanta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4746-5297</orcidid></search><sort><creationdate>20220901</creationdate><title>Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices</title><author>Alekhya, Y. ; Nanda, Umakanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dielectrics</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Power management</topic><topic>Random access memory</topic><topic>Semiconductor devices</topic><topic>Static random access memory</topic><topic>Topology</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alekhya, Y.</creatorcontrib><creatorcontrib>Nanda, Umakanta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alekhya, Y.</au><au>Nanda, Umakanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>14</issue><spage>8815</spage><epage>8830</epage><pages>8815-8830</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>A novel reduced power with enhanced speed (RPES) technique for Static Random Access Memory (SRAM) topologies using Carbon Nano Tube Field Effect Transistors (CNTFETs) instead of traditional MOSFETs which is in demand for edge AI devices, energy efficient deep neural networks, smart wearable devices and high-speed era is proposed in this paper. This work reduces propagation delay and sub-threshold leakage current using RPES technique with a power supply of 0.9V. The performance and power delay product (PDP) of 6T, 8T and 10T SRAM cells is analysed for CNTFET based RPES technique at 45nm technology. Simulated results using Stanford CNTFET model shows improvement in PDP of proposed 6T SRAM cell by 66% compared to Conv6T and 27% compared to Ternary 4TSTI 6T SRAM. Conv 8T and Diff 8T are implemented using RPES technique which shows improvement by 40.9% and 74.3% respectively. Among SE10T and Diff 10T topologies, Diff 10T has better PDP when implemented using RPES technique. All SRAM cells mentioned are analyzed for various high-k dielectric materials, oxide thickness and pitch values of CNTFET and best fitting results are proposed for SRAM cells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-021-01589-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4746-5297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2022-09, Vol.14 (14), p.8815-8830
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2920163169
source Springer Nature
subjects Artificial neural networks
Chemistry
Chemistry and Materials Science
Dielectrics
Environmental Chemistry
Field effect transistors
Inorganic Chemistry
Lasers
Leakage current
Materials Science
Optical Devices
Optics
Original Paper
Photonics
Polymer Sciences
Power management
Random access memory
Semiconductor devices
Static random access memory
Topology
Wearable technology
title Investigation of CNTFET Based Energy Efficient Fast SRAM Cells for Edge AI Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20CNTFET%20Based%20Energy%20Efficient%20Fast%20SRAM%20Cells%20for%20Edge%20AI%20Devices&rft.jtitle=SILICON&rft.au=Alekhya,%20Y.&rft.date=2022-09-01&rft.volume=14&rft.issue=14&rft.spage=8815&rft.epage=8830&rft.pages=8815-8830&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-021-01589-0&rft_dat=%3Cproquest_cross%3E2920163169%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-22197e8b6a5a0f41a236fe302ade9c873eb9cc812325a4cf07e6c866473b3f8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920163169&rft_id=info:pmid/&rfr_iscdi=true