Loading…
On the scaling and critical layer in a turbulent boundary layer over a compliant surface
Simultaneous time-resolved measurements of wall deformation and the 3-D velocity field in boundary layers over a compliant surface are performed by integrating Mach Zehnder interferometry with tomographic particle tracking velocimetry. The pressure is calculated by spatially integrating the material...
Saved in:
Published in: | Journal of fluid mechanics 2024-01, Vol.980, Article R2 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Simultaneous time-resolved measurements of wall deformation and the 3-D velocity field in boundary layers over a compliant surface are performed by integrating Mach Zehnder interferometry with tomographic particle tracking velocimetry. The pressure is calculated by spatially integrating the material acceleration. Combining data obtained from several references, trends of the deformation r.m.s. scaled by the compliant wall thickness collapse when plotted vs pressure fluctuations scaled by the material shear modulus. For the present data, at all Reynolds numbers, the deformation waves travel at 53% of the free-stream velocity and have a preferred wavelength of three times the thickness. The latter is consistent with theoretical models. Adopting insight derived from atmospheric wind–wave interactions, the pressure–deformation correlations peak at or slightly above the ‘critical layer’, where the mean flow speed is equal to the surface wave speed. This layer is located within the log layer, and when expressed using inner variables, increases in elevation with increasing Reynolds number. For the entire region below the critical layer, wavenumber–frequency spectra of pressure and vertical velocity fluctuations indicate that the turbulence is phase locked and travels with the deformation, even for deformation amplitudes much smaller than a wall unit. In contrast, above the critical layer, the turbulence is advected at the local mean streamwise velocity, and its correlation with the deformation decays rapidly. These findings indicate that the height of the zone dominated by flow-deformation interactions is determined by the surface wave speed, and its variations are caused by deformation-induced modifications to the mean velocity profile. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2024.11 |