Loading…

Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features

We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe 3+ into Fe 2+ o...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2022-09, Vol.137 (9), p.1018, Article 1018
Main Authors: Lamonova, K., Orel, S., Pashkevich, Yu, Bekirov, B., Hidulianov, M., Ivanchenko, I., Popenko, N., Kovalenko, N., Prokhorov, A., Hizhnyi, Yu, Nedilko, S., Klyui, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3
cites cdi_FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3
container_end_page
container_issue 9
container_start_page 1018
container_title European physical journal plus
container_volume 137
creator Lamonova, K.
Orel, S.
Pashkevich, Yu
Bekirov, B.
Hidulianov, M.
Ivanchenko, I.
Popenko, N.
Kovalenko, N.
Prokhorov, A.
Hizhnyi, Yu
Nedilko, S.
Klyui, N.
description We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe 3+ into Fe 2+ on cooling is detected. The EPR spectrum formation mechanism is studied using a complex theoretical approach that combines the semi-empirical Modified Crystal Field Theory and structure optimizations using the DFT-based band-periodic plane-wave pseudopotential method. A theoretical model of the EPR spectrum formation due to two alternative paramagnetic sub-systems related to Fe 2+ and Fe 3+ ions is developed. The manifestation of structural defects occurring in the doping process in the EPR spectrum formation is analyzed. Graphical abstract
doi_str_mv 10.1140/epjp/s13360-022-03237-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920276815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920276815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWGp_gwue1-5nNvEmxapQ8GC96GHZbCY1pdnE3QTaf--2EfTmXGZg5nkHniS5puSWUkHm0G27eaCcpwQTxjDhjCu8P0smjOYESyHE-Z_5MpmFsCWxRE5FLibJxxqaDrzpBw-4duVgoUT20_gNoN4bFyrwqHZoCbhsu7h7d6-AQu02O0DWH0JvdneogYi4OjTIuBJVcIoLV8lFZXYBZj99mrwtH9aLJ7x6eXxe3K-w5Vz0WHBWpKrICyuLlBJOIBPWZJyCVLasTC55QZmSlczSLK0Uq5TIlLRMSMHKsuDT5GbM7Xz7NUDo9bYdvIsvNcsZYSrNqIxXaryyvg3BQ6U7XzfGHzQl-ihTH2XqUaaOMvVJpt5HMhvJEAm3Af-b_x_6DdCHe6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920276815</pqid></control><display><type>article</type><title>Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features</title><source>Springer Nature</source><creator>Lamonova, K. ; Orel, S. ; Pashkevich, Yu ; Bekirov, B. ; Hidulianov, M. ; Ivanchenko, I. ; Popenko, N. ; Kovalenko, N. ; Prokhorov, A. ; Hizhnyi, Yu ; Nedilko, S. ; Klyui, N.</creator><creatorcontrib>Lamonova, K. ; Orel, S. ; Pashkevich, Yu ; Bekirov, B. ; Hidulianov, M. ; Ivanchenko, I. ; Popenko, N. ; Kovalenko, N. ; Prokhorov, A. ; Hizhnyi, Yu ; Nedilko, S. ; Klyui, N.</creatorcontrib><description>We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe 3+ into Fe 2+ on cooling is detected. The EPR spectrum formation mechanism is studied using a complex theoretical approach that combines the semi-empirical Modified Crystal Field Theory and structure optimizations using the DFT-based band-periodic plane-wave pseudopotential method. A theoretical model of the EPR spectrum formation due to two alternative paramagnetic sub-systems related to Fe 2+ and Fe 3+ ions is developed. The manifestation of structural defects occurring in the doping process in the EPR spectrum formation is analyzed. Graphical abstract</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03237-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Bridgman method ; Charge transfer ; Complex Systems ; Condensed Matter Physics ; Crystal defects ; Crystal field theory ; Crystal growth ; Crystal structure ; Crystals ; Electrons ; Empirical analysis ; Ferric ions ; Ferrous ions ; Homogeneous structure ; Ions ; Magnetic fields ; Mathematical and Computational Physics ; Metals ; Molecular ; Optical and Plasma Physics ; Physical properties ; Physics ; Physics and Astronomy ; Plane waves ; Regular Article ; Scientific imaging ; Single crystals ; Solid solutions ; Symmetry ; Theoretical ; Zinc ; Zinc selenide</subject><ispartof>European physical journal plus, 2022-09, Vol.137 (9), p.1018, Article 1018</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3</citedby><cites>FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3</cites><orcidid>0000-0002-2388-4326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lamonova, K.</creatorcontrib><creatorcontrib>Orel, S.</creatorcontrib><creatorcontrib>Pashkevich, Yu</creatorcontrib><creatorcontrib>Bekirov, B.</creatorcontrib><creatorcontrib>Hidulianov, M.</creatorcontrib><creatorcontrib>Ivanchenko, I.</creatorcontrib><creatorcontrib>Popenko, N.</creatorcontrib><creatorcontrib>Kovalenko, N.</creatorcontrib><creatorcontrib>Prokhorov, A.</creatorcontrib><creatorcontrib>Hizhnyi, Yu</creatorcontrib><creatorcontrib>Nedilko, S.</creatorcontrib><creatorcontrib>Klyui, N.</creatorcontrib><title>Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe 3+ into Fe 2+ on cooling is detected. The EPR spectrum formation mechanism is studied using a complex theoretical approach that combines the semi-empirical Modified Crystal Field Theory and structure optimizations using the DFT-based band-periodic plane-wave pseudopotential method. A theoretical model of the EPR spectrum formation due to two alternative paramagnetic sub-systems related to Fe 2+ and Fe 3+ ions is developed. The manifestation of structural defects occurring in the doping process in the EPR spectrum formation is analyzed. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bridgman method</subject><subject>Charge transfer</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystal field theory</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electrons</subject><subject>Empirical analysis</subject><subject>Ferric ions</subject><subject>Ferrous ions</subject><subject>Homogeneous structure</subject><subject>Ions</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Metals</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane waves</subject><subject>Regular Article</subject><subject>Scientific imaging</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Zinc</subject><subject>Zinc selenide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWGp_gwue1-5nNvEmxapQ8GC96GHZbCY1pdnE3QTaf--2EfTmXGZg5nkHniS5puSWUkHm0G27eaCcpwQTxjDhjCu8P0smjOYESyHE-Z_5MpmFsCWxRE5FLibJxxqaDrzpBw-4duVgoUT20_gNoN4bFyrwqHZoCbhsu7h7d6-AQu02O0DWH0JvdneogYi4OjTIuBJVcIoLV8lFZXYBZj99mrwtH9aLJ7x6eXxe3K-w5Vz0WHBWpKrICyuLlBJOIBPWZJyCVLasTC55QZmSlczSLK0Uq5TIlLRMSMHKsuDT5GbM7Xz7NUDo9bYdvIsvNcsZYSrNqIxXaryyvg3BQ6U7XzfGHzQl-ihTH2XqUaaOMvVJpt5HMhvJEAm3Af-b_x_6DdCHe6o</recordid><startdate>20220907</startdate><enddate>20220907</enddate><creator>Lamonova, K.</creator><creator>Orel, S.</creator><creator>Pashkevich, Yu</creator><creator>Bekirov, B.</creator><creator>Hidulianov, M.</creator><creator>Ivanchenko, I.</creator><creator>Popenko, N.</creator><creator>Kovalenko, N.</creator><creator>Prokhorov, A.</creator><creator>Hizhnyi, Yu</creator><creator>Nedilko, S.</creator><creator>Klyui, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2388-4326</orcidid></search><sort><creationdate>20220907</creationdate><title>Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features</title><author>Lamonova, K. ; Orel, S. ; Pashkevich, Yu ; Bekirov, B. ; Hidulianov, M. ; Ivanchenko, I. ; Popenko, N. ; Kovalenko, N. ; Prokhorov, A. ; Hizhnyi, Yu ; Nedilko, S. ; Klyui, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bridgman method</topic><topic>Charge transfer</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystal field theory</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electrons</topic><topic>Empirical analysis</topic><topic>Ferric ions</topic><topic>Ferrous ions</topic><topic>Homogeneous structure</topic><topic>Ions</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Metals</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane waves</topic><topic>Regular Article</topic><topic>Scientific imaging</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Zinc</topic><topic>Zinc selenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamonova, K.</creatorcontrib><creatorcontrib>Orel, S.</creatorcontrib><creatorcontrib>Pashkevich, Yu</creatorcontrib><creatorcontrib>Bekirov, B.</creatorcontrib><creatorcontrib>Hidulianov, M.</creatorcontrib><creatorcontrib>Ivanchenko, I.</creatorcontrib><creatorcontrib>Popenko, N.</creatorcontrib><creatorcontrib>Kovalenko, N.</creatorcontrib><creatorcontrib>Prokhorov, A.</creatorcontrib><creatorcontrib>Hizhnyi, Yu</creatorcontrib><creatorcontrib>Nedilko, S.</creatorcontrib><creatorcontrib>Klyui, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamonova, K.</au><au>Orel, S.</au><au>Pashkevich, Yu</au><au>Bekirov, B.</au><au>Hidulianov, M.</au><au>Ivanchenko, I.</au><au>Popenko, N.</au><au>Kovalenko, N.</au><au>Prokhorov, A.</au><au>Hizhnyi, Yu</au><au>Nedilko, S.</au><au>Klyui, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-09-07</date><risdate>2022</risdate><volume>137</volume><issue>9</issue><spage>1018</spage><pages>1018-</pages><artnum>1018</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe 3+ into Fe 2+ on cooling is detected. The EPR spectrum formation mechanism is studied using a complex theoretical approach that combines the semi-empirical Modified Crystal Field Theory and structure optimizations using the DFT-based band-periodic plane-wave pseudopotential method. A theoretical model of the EPR spectrum formation due to two alternative paramagnetic sub-systems related to Fe 2+ and Fe 3+ ions is developed. The manifestation of structural defects occurring in the doping process in the EPR spectrum formation is analyzed. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03237-x</doi><orcidid>https://orcid.org/0000-0002-2388-4326</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-09, Vol.137 (9), p.1018, Article 1018
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920276815
source Springer Nature
subjects Applied and Technical Physics
Atomic
Bridgman method
Charge transfer
Complex Systems
Condensed Matter Physics
Crystal defects
Crystal field theory
Crystal growth
Crystal structure
Crystals
Electrons
Empirical analysis
Ferric ions
Ferrous ions
Homogeneous structure
Ions
Magnetic fields
Mathematical and Computational Physics
Metals
Molecular
Optical and Plasma Physics
Physical properties
Physics
Physics and Astronomy
Plane waves
Regular Article
Scientific imaging
Single crystals
Solid solutions
Symmetry
Theoretical
Zinc
Zinc selenide
title Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-induced%20charge%20transfer%20in%20Fe-doped%20ZnSe%20single%20crystal:%20mechanism%20and%20features&rft.jtitle=European%20physical%20journal%20plus&rft.au=Lamonova,%20K.&rft.date=2022-09-07&rft.volume=137&rft.issue=9&rft.spage=1018&rft.pages=1018-&rft.artnum=1018&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03237-x&rft_dat=%3Cproquest_cross%3E2920276815%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-432b67b9bc5b61030e84ca831e57cdfa953b1275f58686f72f74875c24542ddb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920276815&rft_id=info:pmid/&rfr_iscdi=true