Loading…
Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction
Remaining useful life (RUL) prediction is crucial for enhancing equipment reliability and safety in industry. In recent years, deep learning techniques, particularly those based on Long Short-Term Memory (LSTM) networks, have been widely used in the field. However, the performance of LSTM-based mode...
Saved in:
Published in: | IEEE sensors journal 2024-02, Vol.24 (3), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993 |
container_end_page | 1 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Li, Xuanlin Hu, Yawei Wang, Hang Liu, Yongbin Liu, Xianzeng Cao, Zheng |
description | Remaining useful life (RUL) prediction is crucial for enhancing equipment reliability and safety in industry. In recent years, deep learning techniques, particularly those based on Long Short-Term Memory (LSTM) networks, have been widely used in the field. However, the performance of LSTM-based models is often constrained by the loss of early time dependence. Additionally, learning the mapping relationships between large multi-sensor data and features poses a challenge. To address these issues, a novel multi-sensor data-driven RUL prediction method named the Spatial-Temporal Attention and Information Reinforcement Network (STAIRnet) is proposed. First, the spatial-temporal attention module adaptively weights and encodes the original signal in both temporal and spatial dimensions. Second, the feature extraction module extracts hidden features from the weighted data, while the lookback mechanism filters the hidden states. Following that, the information reinforcement module decodes the encoded information and supplements, which reinforces the hidden features to improve the model performance. Finally, degraded features are mapped to specific RUL values. The effectiveness of STAIRnet was validated using a commonly used dataset. The results demonstrated that the proposed method outperformed other approaches in terms of prediction accuracy and computational efficiency. |
doi_str_mv | 10.1109/JSEN.2023.3342884 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2920286032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10367835</ieee_id><sourcerecordid>2920286032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993</originalsourceid><addsrcrecordid>eNpNkEtLxDAQgIMouK7-AMFDwHPXvNqmR1nWF4seVsFbSdOJZm3TmqaI_950dw-e5sE3M8yH0CUlC0pJcfO0WT0vGGF8wblgUoojNKNpKhOaC3k85Zwkgufvp-hsGLaE0CJP8xlqN70KVjVJgLbvvGqwCgFcsJ3DytXYOtP5Vu1qD7tKQxsB7CD8dP4Lxw5ulf60DiLRKuus-8DjAGZscGMN4N5DbfW04hydGNUMcHGIc_R2t3pdPiTrl_vH5e060awQIVGMqUoKmRrNFTAhREYkCAGZ1qKuskyq-JvhtTY5pRXlqqpFLVKW8iI1RcHn6Hq_t_fd9whDKLfd6F08WbIiWpIZ4SxSdE9p3w2DB1P23rbK_5aUlJPVcrJaTlbLg9U4c7WfsQDwj-dZLnnK_wCA-3Ys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920286032</pqid></control><display><type>article</type><title>Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xuanlin ; Hu, Yawei ; Wang, Hang ; Liu, Yongbin ; Liu, Xianzeng ; Cao, Zheng</creator><creatorcontrib>Li, Xuanlin ; Hu, Yawei ; Wang, Hang ; Liu, Yongbin ; Liu, Xianzeng ; Cao, Zheng</creatorcontrib><description>Remaining useful life (RUL) prediction is crucial for enhancing equipment reliability and safety in industry. In recent years, deep learning techniques, particularly those based on Long Short-Term Memory (LSTM) networks, have been widely used in the field. However, the performance of LSTM-based models is often constrained by the loss of early time dependence. Additionally, learning the mapping relationships between large multi-sensor data and features poses a challenge. To address these issues, a novel multi-sensor data-driven RUL prediction method named the Spatial-Temporal Attention and Information Reinforcement Network (STAIRnet) is proposed. First, the spatial-temporal attention module adaptively weights and encodes the original signal in both temporal and spatial dimensions. Second, the feature extraction module extracts hidden features from the weighted data, while the lookback mechanism filters the hidden states. Following that, the information reinforcement module decodes the encoded information and supplements, which reinforces the hidden features to improve the model performance. Finally, degraded features are mapped to specific RUL values. The effectiveness of STAIRnet was validated using a commonly used dataset. The results demonstrated that the proposed method outperformed other approaches in terms of prediction accuracy and computational efficiency.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3342884</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning ; Feature extraction ; Information reinforcement ; Life prediction ; long short-term memory ; Modules ; Performance degradation ; Remaining useful life prediction ; Spatial-temporal attention ; Useful life</subject><ispartof>IEEE sensors journal, 2024-02, Vol.24 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993</citedby><cites>FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993</cites><orcidid>0000-0002-3420-3784 ; 0000-0002-1849-1720 ; 0000-0003-0329-6110 ; 0000-0002-6937-9958 ; 0000-0001-8797-434X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10367835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Li, Xuanlin</creatorcontrib><creatorcontrib>Hu, Yawei</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yongbin</creatorcontrib><creatorcontrib>Liu, Xianzeng</creatorcontrib><creatorcontrib>Cao, Zheng</creatorcontrib><title>Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Remaining useful life (RUL) prediction is crucial for enhancing equipment reliability and safety in industry. In recent years, deep learning techniques, particularly those based on Long Short-Term Memory (LSTM) networks, have been widely used in the field. However, the performance of LSTM-based models is often constrained by the loss of early time dependence. Additionally, learning the mapping relationships between large multi-sensor data and features poses a challenge. To address these issues, a novel multi-sensor data-driven RUL prediction method named the Spatial-Temporal Attention and Information Reinforcement Network (STAIRnet) is proposed. First, the spatial-temporal attention module adaptively weights and encodes the original signal in both temporal and spatial dimensions. Second, the feature extraction module extracts hidden features from the weighted data, while the lookback mechanism filters the hidden states. Following that, the information reinforcement module decodes the encoded information and supplements, which reinforces the hidden features to improve the model performance. Finally, degraded features are mapped to specific RUL values. The effectiveness of STAIRnet was validated using a commonly used dataset. The results demonstrated that the proposed method outperformed other approaches in terms of prediction accuracy and computational efficiency.</description><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Information reinforcement</subject><subject>Life prediction</subject><subject>long short-term memory</subject><subject>Modules</subject><subject>Performance degradation</subject><subject>Remaining useful life prediction</subject><subject>Spatial-temporal attention</subject><subject>Useful life</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAQgIMouK7-AMFDwHPXvNqmR1nWF4seVsFbSdOJZm3TmqaI_950dw-e5sE3M8yH0CUlC0pJcfO0WT0vGGF8wblgUoojNKNpKhOaC3k85Zwkgufvp-hsGLaE0CJP8xlqN70KVjVJgLbvvGqwCgFcsJ3DytXYOtP5Vu1qD7tKQxsB7CD8dP4Lxw5ulf60DiLRKuus-8DjAGZscGMN4N5DbfW04hydGNUMcHGIc_R2t3pdPiTrl_vH5e060awQIVGMqUoKmRrNFTAhREYkCAGZ1qKuskyq-JvhtTY5pRXlqqpFLVKW8iI1RcHn6Hq_t_fd9whDKLfd6F08WbIiWpIZ4SxSdE9p3w2DB1P23rbK_5aUlJPVcrJaTlbLg9U4c7WfsQDwj-dZLnnK_wCA-3Ys</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Xuanlin</creator><creator>Hu, Yawei</creator><creator>Wang, Hang</creator><creator>Liu, Yongbin</creator><creator>Liu, Xianzeng</creator><creator>Cao, Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3420-3784</orcidid><orcidid>https://orcid.org/0000-0002-1849-1720</orcidid><orcidid>https://orcid.org/0000-0003-0329-6110</orcidid><orcidid>https://orcid.org/0000-0002-6937-9958</orcidid><orcidid>https://orcid.org/0000-0001-8797-434X</orcidid></search><sort><creationdate>20240201</creationdate><title>Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction</title><author>Li, Xuanlin ; Hu, Yawei ; Wang, Hang ; Liu, Yongbin ; Liu, Xianzeng ; Cao, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Information reinforcement</topic><topic>Life prediction</topic><topic>long short-term memory</topic><topic>Modules</topic><topic>Performance degradation</topic><topic>Remaining useful life prediction</topic><topic>Spatial-temporal attention</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuanlin</creatorcontrib><creatorcontrib>Hu, Yawei</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yongbin</creatorcontrib><creatorcontrib>Liu, Xianzeng</creatorcontrib><creatorcontrib>Cao, Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuanlin</au><au>Hu, Yawei</au><au>Wang, Hang</au><au>Liu, Yongbin</au><au>Liu, Xianzeng</au><au>Cao, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Remaining useful life (RUL) prediction is crucial for enhancing equipment reliability and safety in industry. In recent years, deep learning techniques, particularly those based on Long Short-Term Memory (LSTM) networks, have been widely used in the field. However, the performance of LSTM-based models is often constrained by the loss of early time dependence. Additionally, learning the mapping relationships between large multi-sensor data and features poses a challenge. To address these issues, a novel multi-sensor data-driven RUL prediction method named the Spatial-Temporal Attention and Information Reinforcement Network (STAIRnet) is proposed. First, the spatial-temporal attention module adaptively weights and encodes the original signal in both temporal and spatial dimensions. Second, the feature extraction module extracts hidden features from the weighted data, while the lookback mechanism filters the hidden states. Following that, the information reinforcement module decodes the encoded information and supplements, which reinforces the hidden features to improve the model performance. Finally, degraded features are mapped to specific RUL values. The effectiveness of STAIRnet was validated using a commonly used dataset. The results demonstrated that the proposed method outperformed other approaches in terms of prediction accuracy and computational efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3342884</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3420-3784</orcidid><orcidid>https://orcid.org/0000-0002-1849-1720</orcidid><orcidid>https://orcid.org/0000-0003-0329-6110</orcidid><orcidid>https://orcid.org/0000-0002-6937-9958</orcidid><orcidid>https://orcid.org/0000-0001-8797-434X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-02, Vol.24 (3), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2920286032 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Deep learning Feature extraction Information reinforcement Life prediction long short-term memory Modules Performance degradation Remaining useful life prediction Spatial-temporal attention Useful life |
title | Spatial-temporal attention and information reinforcement network for machine remaining useful life prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial-temporal%20attention%20and%20information%20reinforcement%20network%20for%20machine%20remaining%20useful%20life%20prediction&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Xuanlin&rft.date=2024-02-01&rft.volume=24&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3342884&rft_dat=%3Cproquest_ieee_%3E2920286032%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-a22ab8485fc3ae2444608e44e6cc4db668a155f3dcf711b13abd4d4525395f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920286032&rft_id=info:pmid/&rft_ieee_id=10367835&rfr_iscdi=true |