Loading…

High-Speed, Low-Voltage Programmable/Erasable Flexible Two-Bit Organic Transistor Nonvolatile Memories Based on Ultraviolet-Ozone Treated Terpolymer Ferroelectric Gate

Organic field-effect transistor nonvolatile memory (OFET-NVM) is an indispensable element for flexible and wearable electronics. The emerging multi-bit OFET-NVMs propose an effective strategy to further multiply the storage capacity. However, they have still suffered serious bottleneck issues of hig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2024-02, Vol.45 (2), p.240-243
Main Authors: Ding, Yin, Xu, Qingling, Wei, Haitian, Su, Jing, Wang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organic field-effect transistor nonvolatile memory (OFET-NVM) is an indispensable element for flexible and wearable electronics. The emerging multi-bit OFET-NVMs propose an effective strategy to further multiply the storage capacity. However, they have still suffered serious bottleneck issues of high programming/erasing (P/E) voltage and slow P/E speed. In this letter, we demonstrate a facile method to resolve the both bottlenecks, and investigate the relevant mechanisms. Our flexible OFET-NVMs exhibit excellent 2-bit memory features, with a fast P/E speed of [Formula Omitted], low P/E voltages of ±15 V, highly reliable endurance, highly stable retention, and good mechanical durability. This work paves the way toward the development of next-generation high-speed, high-capacity flexible memory.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2023.3337822