Loading…
Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy
Extracting consistent statistics between relevant free-energy minima of a molecular system is essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome th...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Molina-Taborda, Ana Cossio, Pilar Lopez-Acevedo, Olga Gabrié, Marylou |
description | Extracting consistent statistics between relevant free-energy minima of a molecular system is essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we develop an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one Normalizing Flow (NF) and one MLP per state, achieving rapid convergence towards the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free-energy differences or optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster, belonging to a set of systems with diverse applications in the fields of medicine and catalysis. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920373535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920373535</sourcerecordid><originalsourceid>FETCH-proquest_journals_29203735353</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgKNo7PHAt1MT6WaooHsCtyCO-tinpS81H0dPbhQeQWcxiZiDGUqnFfLOUciSyEJo8z-VqLYtCjcV1p6N5ElhCz4YrcCXsnY2fFpkhYNtZ8gGQ79C5SBwNWiAmXxkK8DKxhkdCjqmFlnSNbHQ_oNbJo35PxbBEGyj7eSJmp-PlcJ533j0ShXhrXPLcp5vcylytVdHz3_UFdB9EmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920373535</pqid></control><display><type>article</type><title>Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy</title><source>Publicly Available Content Database</source><creator>Molina-Taborda, Ana ; Cossio, Pilar ; Lopez-Acevedo, Olga ; Gabrié, Marylou</creator><creatorcontrib>Molina-Taborda, Ana ; Cossio, Pilar ; Lopez-Acevedo, Olga ; Gabrié, Marylou</creatorcontrib><description>Extracting consistent statistics between relevant free-energy minima of a molecular system is essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we develop an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one Normalizing Flow (NF) and one MLP per state, achieving rapid convergence towards the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free-energy differences or optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster, belonging to a set of systems with diverse applications in the fields of medicine and catalysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Active learning ; Boltzmann distribution ; Configurations ; Density functional theory ; Energy consumption ; Free energy ; Isomerization ; Iterative methods ; Machine learning ; Markov chains ; Molecular dynamics ; Nanoclusters ; Normalizing (statistics) ; Quantum mechanics ; Samplers ; Sampling</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2920373535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,36988,44565</link.rule.ids></links><search><creatorcontrib>Molina-Taborda, Ana</creatorcontrib><creatorcontrib>Cossio, Pilar</creatorcontrib><creatorcontrib>Lopez-Acevedo, Olga</creatorcontrib><creatorcontrib>Gabrié, Marylou</creatorcontrib><title>Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy</title><title>arXiv.org</title><description>Extracting consistent statistics between relevant free-energy minima of a molecular system is essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we develop an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one Normalizing Flow (NF) and one MLP per state, achieving rapid convergence towards the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free-energy differences or optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster, belonging to a set of systems with diverse applications in the fields of medicine and catalysis.</description><subject>Accuracy</subject><subject>Active learning</subject><subject>Boltzmann distribution</subject><subject>Configurations</subject><subject>Density functional theory</subject><subject>Energy consumption</subject><subject>Free energy</subject><subject>Isomerization</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Molecular dynamics</subject><subject>Nanoclusters</subject><subject>Normalizing (statistics)</subject><subject>Quantum mechanics</subject><subject>Samplers</subject><subject>Sampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgKNo7PHAt1MT6WaooHsCtyCO-tinpS81H0dPbhQeQWcxiZiDGUqnFfLOUciSyEJo8z-VqLYtCjcV1p6N5ElhCz4YrcCXsnY2fFpkhYNtZ8gGQ79C5SBwNWiAmXxkK8DKxhkdCjqmFlnSNbHQ_oNbJo35PxbBEGyj7eSJmp-PlcJ533j0ShXhrXPLcp5vcylytVdHz3_UFdB9EmQ</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Molina-Taborda, Ana</creator><creator>Cossio, Pilar</creator><creator>Lopez-Acevedo, Olga</creator><creator>Gabrié, Marylou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240416</creationdate><title>Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy</title><author>Molina-Taborda, Ana ; Cossio, Pilar ; Lopez-Acevedo, Olga ; Gabrié, Marylou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29203735353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Active learning</topic><topic>Boltzmann distribution</topic><topic>Configurations</topic><topic>Density functional theory</topic><topic>Energy consumption</topic><topic>Free energy</topic><topic>Isomerization</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Molecular dynamics</topic><topic>Nanoclusters</topic><topic>Normalizing (statistics)</topic><topic>Quantum mechanics</topic><topic>Samplers</topic><topic>Sampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Molina-Taborda, Ana</creatorcontrib><creatorcontrib>Cossio, Pilar</creatorcontrib><creatorcontrib>Lopez-Acevedo, Olga</creatorcontrib><creatorcontrib>Gabrié, Marylou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina-Taborda, Ana</au><au>Cossio, Pilar</au><au>Lopez-Acevedo, Olga</au><au>Gabrié, Marylou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy</atitle><jtitle>arXiv.org</jtitle><date>2024-04-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Extracting consistent statistics between relevant free-energy minima of a molecular system is essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we develop an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one Normalizing Flow (NF) and one MLP per state, achieving rapid convergence towards the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free-energy differences or optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster, belonging to a set of systems with diverse applications in the fields of medicine and catalysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2920373535 |
source | Publicly Available Content Database |
subjects | Accuracy Active learning Boltzmann distribution Configurations Density functional theory Energy consumption Free energy Isomerization Iterative methods Machine learning Markov chains Molecular dynamics Nanoclusters Normalizing (statistics) Quantum mechanics Samplers Sampling |
title | Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Active%20learning%20of%20Boltzmann%20samplers%20and%20potential%20energies%20with%20quantum%20mechanical%20accuracy&rft.jtitle=arXiv.org&rft.au=Molina-Taborda,%20Ana&rft.date=2024-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920373535%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29203735353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920373535&rft_id=info:pmid/&rfr_iscdi=true |