Loading…

An efficient and effective hop-based approach for influence maximization in social networks

Influence maximization in social networks is a classic and extensively studied problem that targets at selecting a set of initial seed nodes to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale so...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2018-12, Vol.8 (1), p.10, Article 10
Main Authors: Tang, Jing, Tang, Xueyan, Yuan, Junsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443
cites cdi_FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443
container_end_page
container_issue 1
container_start_page 10
container_title Social network analysis and mining
container_volume 8
creator Tang, Jing
Tang, Xueyan
Yuan, Junsong
description Influence maximization in social networks is a classic and extensively studied problem that targets at selecting a set of initial seed nodes to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale social networks. Prior Monte Carlo simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can be easily applied to billion-scale networks under the commonly used Independent Cascade and Linear Threshold influence diffusion models. Moreover, we provide provable data-dependent approximation guarantees for our proposed hop-based approaches. Experimental evaluations with real social network datasets demonstrate the efficiency and effectiveness of our algorithms.
doi_str_mv 10.1007/s13278-018-0489-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920385412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920385412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGofwF3A9WhuM0mWpXiDgpvuXIRMJrGpbTImU7U-vSkjunJxOBf-_5zDB8AlRtcYIX6TMSVcVAiXYEJWhxMwwaKRVc0aefpb1-gczHLeIIQwolSiZgKe5wFa57zxNgxQh-7YWTP4dwvXsa9anW0Hdd-nqM0aupigD267t8FYuNOffue_9OBjKGOYo_F6C4MdPmJ6zRfgzOlttrOfPAWru9vV4qFaPt0_LubLytBaDpVjrCVN55jkWHaO1wa1dS0J0aiTkhLRtowzwl3HuRCdYLTIG81M2xDNGJ2Cq3Ft-fFtb_OgNnGfQrmoiCSIipphUlR4VJkUc07WqT75nU4HhZE6UlQjRVUoqiNFdSgeMnpy0YYXm_42_2_6Bq7jdWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920385412</pqid></control><display><type>article</type><title>An efficient and effective hop-based approach for influence maximization in social networks</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Nature</source><creator>Tang, Jing ; Tang, Xueyan ; Yuan, Junsong</creator><creatorcontrib>Tang, Jing ; Tang, Xueyan ; Yuan, Junsong</creatorcontrib><description>Influence maximization in social networks is a classic and extensively studied problem that targets at selecting a set of initial seed nodes to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale social networks. Prior Monte Carlo simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can be easily applied to billion-scale networks under the commonly used Independent Cascade and Linear Threshold influence diffusion models. Moreover, we provide provable data-dependent approximation guarantees for our proposed hop-based approaches. Experimental evaluations with real social network datasets demonstrate the efficiency and effectiveness of our algorithms.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-018-0489-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Applications of Graph Theory and Complex Networks ; Approximation ; Climbing ; Computer Science ; Data Mining and Knowledge Discovery ; Diffusion models ; Economics ; Efficiency ; Game Theory ; Heuristic ; Heuristic methods ; Humanities ; Law ; Maximization ; Methodology of the Social Sciences ; Monte Carlo simulation ; Optimization ; Original Article ; Probability ; Propagation ; Simulation ; Social and Behav. Sciences ; Social networks ; Statistics for Social Sciences ; Viral marketing</subject><ispartof>Social network analysis and mining, 2018-12, Vol.8 (1), p.10, Article 10</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443</citedby><cites>FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443</cites><orcidid>0000-0002-0785-707X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2920385412?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,12847,21394,27924,27925,33223,33611,43733</link.rule.ids></links><search><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Tang, Xueyan</creatorcontrib><creatorcontrib>Yuan, Junsong</creatorcontrib><title>An efficient and effective hop-based approach for influence maximization in social networks</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Influence maximization in social networks is a classic and extensively studied problem that targets at selecting a set of initial seed nodes to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale social networks. Prior Monte Carlo simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can be easily applied to billion-scale networks under the commonly used Independent Cascade and Linear Threshold influence diffusion models. Moreover, we provide provable data-dependent approximation guarantees for our proposed hop-based approaches. Experimental evaluations with real social network datasets demonstrate the efficiency and effectiveness of our algorithms.</description><subject>Algorithms</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Approximation</subject><subject>Climbing</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diffusion models</subject><subject>Economics</subject><subject>Efficiency</subject><subject>Game Theory</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Humanities</subject><subject>Law</subject><subject>Maximization</subject><subject>Methodology of the Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Probability</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Social and Behav. Sciences</subject><subject>Social networks</subject><subject>Statistics for Social Sciences</subject><subject>Viral marketing</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp1kMtKAzEUhoMoWGofwF3A9WhuM0mWpXiDgpvuXIRMJrGpbTImU7U-vSkjunJxOBf-_5zDB8AlRtcYIX6TMSVcVAiXYEJWhxMwwaKRVc0aefpb1-gczHLeIIQwolSiZgKe5wFa57zxNgxQh-7YWTP4dwvXsa9anW0Hdd-nqM0aupigD267t8FYuNOffue_9OBjKGOYo_F6C4MdPmJ6zRfgzOlttrOfPAWru9vV4qFaPt0_LubLytBaDpVjrCVN55jkWHaO1wa1dS0J0aiTkhLRtowzwl3HuRCdYLTIG81M2xDNGJ2Cq3Ft-fFtb_OgNnGfQrmoiCSIipphUlR4VJkUc07WqT75nU4HhZE6UlQjRVUoqiNFdSgeMnpy0YYXm_42_2_6Bq7jdWs</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tang, Jing</creator><creator>Tang, Xueyan</creator><creator>Yuan, Junsong</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0785-707X</orcidid></search><sort><creationdate>20181201</creationdate><title>An efficient and effective hop-based approach for influence maximization in social networks</title><author>Tang, Jing ; Tang, Xueyan ; Yuan, Junsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Approximation</topic><topic>Climbing</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diffusion models</topic><topic>Economics</topic><topic>Efficiency</topic><topic>Game Theory</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Humanities</topic><topic>Law</topic><topic>Maximization</topic><topic>Methodology of the Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Probability</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Social and Behav. Sciences</topic><topic>Social networks</topic><topic>Statistics for Social Sciences</topic><topic>Viral marketing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Tang, Xueyan</creatorcontrib><creatorcontrib>Yuan, Junsong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Social Science Database (ProQuest)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jing</au><au>Tang, Xueyan</au><au>Yuan, Junsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient and effective hop-based approach for influence maximization in social networks</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>10</spage><pages>10-</pages><artnum>10</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Influence maximization in social networks is a classic and extensively studied problem that targets at selecting a set of initial seed nodes to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale social networks. Prior Monte Carlo simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can be easily applied to billion-scale networks under the commonly used Independent Cascade and Linear Threshold influence diffusion models. Moreover, we provide provable data-dependent approximation guarantees for our proposed hop-based approaches. Experimental evaluations with real social network datasets demonstrate the efficiency and effectiveness of our algorithms.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-018-0489-y</doi><orcidid>https://orcid.org/0000-0002-0785-707X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2018-12, Vol.8 (1), p.10, Article 10
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2920385412
source International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Nature
subjects Algorithms
Applications of Graph Theory and Complex Networks
Approximation
Climbing
Computer Science
Data Mining and Knowledge Discovery
Diffusion models
Economics
Efficiency
Game Theory
Heuristic
Heuristic methods
Humanities
Law
Maximization
Methodology of the Social Sciences
Monte Carlo simulation
Optimization
Original Article
Probability
Propagation
Simulation
Social and Behav. Sciences
Social networks
Statistics for Social Sciences
Viral marketing
title An efficient and effective hop-based approach for influence maximization in social networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20and%20effective%20hop-based%20approach%20for%20influence%20maximization%20in%20social%20networks&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Tang,%20Jing&rft.date=2018-12-01&rft.volume=8&rft.issue=1&rft.spage=10&rft.pages=10-&rft.artnum=10&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-018-0489-y&rft_dat=%3Cproquest_cross%3E2920385412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f44b26df49719df75c0b55922a0d99328bb47427fd7788d843b266a4cb62a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920385412&rft_id=info:pmid/&rfr_iscdi=true