Loading…

Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid

The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the...

Full description

Saved in:
Bibliographic Details
Published in:Process integration and optimization for sustainability 2023-11, Vol.7 (5), p.1333-1343
Main Authors: Kunwer, Ram, Donga, Ramesh K., Kumar, Ramesh, Singh, Harpal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83
cites cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83
container_end_page 1343
container_issue 5
container_start_page 1333
container_title Process integration and optimization for sustainability
container_volume 7
creator Kunwer, Ram
Donga, Ramesh K.
Kumar, Ramesh
Singh, Harpal
description The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO 2 nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO 2 in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number ( Nu ) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number ( Re ) on thermal efficiency and friction factor ( f ) for different volume fractions of TiO 2 in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO 2 in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO 2 at a higher Reynolds number of 1080.
doi_str_mv 10.1007/s41660-023-00345-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921036360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921036360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhhdRsNS-gKeA59VJspvuHqVaFYoKtngMs9lJm7Ld1GQL6tO7taI3LzNz-P5_4EuScw6XHGB8FTOuFKQgZAogszwtjpKByKFMM5Gp499bFqfJKMY1AIixzArIBsnrfEVhgw2brDCg6Si4T-ycb5m3bNpgx577QezFNxjYxDcNmc4HtoiuXbK567B1uw27cf7d1cQesfW22bn6LDmx2EQa_exhspjezif36ezp7mFyPUuN5GWXkrBCFWOsySJILIg42qoytUFTlaqoOFXELdQo8txyqhFLrozJOYpCUSGHycWhdxv8245ip9d-F9r-pRal4CCVVNBT4kCZ4GMMZPU2uA2GD81B7x3qg0PdO9TfDvW-Wh5CsYfbJYW_6n9SX_ZQdfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921036360</pqid></control><display><type>article</type><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><source>Springer Link</source><creator>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</creator><creatorcontrib>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</creatorcontrib><description>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO 2 nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO 2 in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number ( Nu ) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number ( Re ) on thermal efficiency and friction factor ( f ) for different volume fractions of TiO 2 in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO 2 in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO 2 at a higher Reynolds number of 1080.</description><identifier>ISSN: 2509-4238</identifier><identifier>EISSN: 2509-4246</identifier><identifier>DOI: 10.1007/s41660-023-00345-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Absorbers ; Alternative energy sources ; Aluminum ; Carbon ; Convective heat transfer ; Copper ; Economics and Management ; Efficiency ; Energy consumption ; Energy Policy ; Energy resources ; Energy storage ; Engineering ; Finite volume method ; Flat plates ; Fluid flow ; Friction ; Friction factor ; Graphene ; Heat conductivity ; Heat transfer ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Inlet temperature ; Mathematical models ; Nanocomposites ; Nanofluids ; Nanoparticles ; Numerical analysis ; Original Research Paper ; Ray tracing ; Rayleigh number ; Renewable resources ; Reynolds number ; Solar collectors ; Solar energy ; Solar flux ; Sustainable Development ; Thermodynamic efficiency ; Thermodynamic properties ; Titanium ; Titanium dioxide ; Waste Management/Waste Technology ; Water heaters</subject><ispartof>Process integration and optimization for sustainability, 2023-11, Vol.7 (5), p.1333-1343</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</citedby><cites>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</cites><orcidid>0000-0002-0355-1356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kunwer, Ram</creatorcontrib><creatorcontrib>Donga, Ramesh K.</creatorcontrib><creatorcontrib>Kumar, Ramesh</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><title>Process integration and optimization for sustainability</title><addtitle>Process Integr Optim Sustain</addtitle><description>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO 2 nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO 2 in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number ( Nu ) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number ( Re ) on thermal efficiency and friction factor ( f ) for different volume fractions of TiO 2 in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO 2 in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO 2 at a higher Reynolds number of 1080.</description><subject>Absorbers</subject><subject>Alternative energy sources</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Convective heat transfer</subject><subject>Copper</subject><subject>Economics and Management</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Energy Policy</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Engineering</subject><subject>Finite volume method</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>Friction factor</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inlet temperature</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Original Research Paper</subject><subject>Ray tracing</subject><subject>Rayleigh number</subject><subject>Renewable resources</subject><subject>Reynolds number</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar flux</subject><subject>Sustainable Development</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Waste Management/Waste Technology</subject><subject>Water heaters</subject><issn>2509-4238</issn><issn>2509-4246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhhdRsNS-gKeA59VJspvuHqVaFYoKtngMs9lJm7Ld1GQL6tO7taI3LzNz-P5_4EuScw6XHGB8FTOuFKQgZAogszwtjpKByKFMM5Gp499bFqfJKMY1AIixzArIBsnrfEVhgw2brDCg6Si4T-ycb5m3bNpgx577QezFNxjYxDcNmc4HtoiuXbK567B1uw27cf7d1cQesfW22bn6LDmx2EQa_exhspjezif36ezp7mFyPUuN5GWXkrBCFWOsySJILIg42qoytUFTlaqoOFXELdQo8txyqhFLrozJOYpCUSGHycWhdxv8245ip9d-F9r-pRal4CCVVNBT4kCZ4GMMZPU2uA2GD81B7x3qg0PdO9TfDvW-Wh5CsYfbJYW_6n9SX_ZQdfY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kunwer, Ram</creator><creator>Donga, Ramesh K.</creator><creator>Kumar, Ramesh</creator><creator>Singh, Harpal</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-0355-1356</orcidid></search><sort><creationdate>20231101</creationdate><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><author>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Alternative energy sources</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Convective heat transfer</topic><topic>Copper</topic><topic>Economics and Management</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Energy Policy</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Engineering</topic><topic>Finite volume method</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>Friction factor</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inlet temperature</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Original Research Paper</topic><topic>Ray tracing</topic><topic>Rayleigh number</topic><topic>Renewable resources</topic><topic>Reynolds number</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar flux</topic><topic>Sustainable Development</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Waste Management/Waste Technology</topic><topic>Water heaters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunwer, Ram</creatorcontrib><creatorcontrib>Donga, Ramesh K.</creatorcontrib><creatorcontrib>Kumar, Ramesh</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Process integration and optimization for sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunwer, Ram</au><au>Donga, Ramesh K.</au><au>Kumar, Ramesh</au><au>Singh, Harpal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</atitle><jtitle>Process integration and optimization for sustainability</jtitle><stitle>Process Integr Optim Sustain</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><spage>1333</spage><epage>1343</epage><pages>1333-1343</pages><issn>2509-4238</issn><eissn>2509-4246</eissn><abstract>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO 2 nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO 2 in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number ( Nu ) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number ( Re ) on thermal efficiency and friction factor ( f ) for different volume fractions of TiO 2 in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO 2 in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO 2 at a higher Reynolds number of 1080.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41660-023-00345-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0355-1356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2509-4238
ispartof Process integration and optimization for sustainability, 2023-11, Vol.7 (5), p.1333-1343
issn 2509-4238
2509-4246
language eng
recordid cdi_proquest_journals_2921036360
source Springer Link
subjects Absorbers
Alternative energy sources
Aluminum
Carbon
Convective heat transfer
Copper
Economics and Management
Efficiency
Energy consumption
Energy Policy
Energy resources
Energy storage
Engineering
Finite volume method
Flat plates
Fluid flow
Friction
Friction factor
Graphene
Heat conductivity
Heat transfer
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Inlet temperature
Mathematical models
Nanocomposites
Nanofluids
Nanoparticles
Numerical analysis
Original Research Paper
Ray tracing
Rayleigh number
Renewable resources
Reynolds number
Solar collectors
Solar energy
Solar flux
Sustainable Development
Thermodynamic efficiency
Thermodynamic properties
Titanium
Titanium dioxide
Waste Management/Waste Technology
Water heaters
title Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Characterization%20of%20Flat%20Plate%20Solar%20Collector%20Using%20Titanium%20Dioxide%20Nanofluid&rft.jtitle=Process%20integration%20and%20optimization%20for%20sustainability&rft.au=Kunwer,%20Ram&rft.date=2023-11-01&rft.volume=7&rft.issue=5&rft.spage=1333&rft.epage=1343&rft.pages=1333-1343&rft.issn=2509-4238&rft.eissn=2509-4246&rft_id=info:doi/10.1007/s41660-023-00345-8&rft_dat=%3Cproquest_cross%3E2921036360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921036360&rft_id=info:pmid/&rfr_iscdi=true