Loading…
Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid
The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO 2 ) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the...
Saved in:
Published in: | Process integration and optimization for sustainability 2023-11, Vol.7 (5), p.1333-1343 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83 |
container_end_page | 1343 |
container_issue | 5 |
container_start_page | 1333 |
container_title | Process integration and optimization for sustainability |
container_volume | 7 |
creator | Kunwer, Ram Donga, Ramesh K. Kumar, Ramesh Singh, Harpal |
description | The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO
2
) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO
2
nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO
2
in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number (
Nu
) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number (
Re
) on thermal efficiency and friction factor (
f
) for different volume fractions of TiO
2
in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO
2
in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO
2
at a higher Reynolds number of 1080. |
doi_str_mv | 10.1007/s41660-023-00345-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921036360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921036360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhhdRsNS-gKeA59VJspvuHqVaFYoKtngMs9lJm7Ld1GQL6tO7taI3LzNz-P5_4EuScw6XHGB8FTOuFKQgZAogszwtjpKByKFMM5Gp499bFqfJKMY1AIixzArIBsnrfEVhgw2brDCg6Si4T-ycb5m3bNpgx577QezFNxjYxDcNmc4HtoiuXbK567B1uw27cf7d1cQesfW22bn6LDmx2EQa_exhspjezif36ezp7mFyPUuN5GWXkrBCFWOsySJILIg42qoytUFTlaqoOFXELdQo8txyqhFLrozJOYpCUSGHycWhdxv8245ip9d-F9r-pRal4CCVVNBT4kCZ4GMMZPU2uA2GD81B7x3qg0PdO9TfDvW-Wh5CsYfbJYW_6n9SX_ZQdfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921036360</pqid></control><display><type>article</type><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><source>Springer Link</source><creator>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</creator><creatorcontrib>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</creatorcontrib><description>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO
2
) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO
2
nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO
2
in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number (
Nu
) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number (
Re
) on thermal efficiency and friction factor (
f
) for different volume fractions of TiO
2
in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO
2
in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO
2
at a higher Reynolds number of 1080.</description><identifier>ISSN: 2509-4238</identifier><identifier>EISSN: 2509-4246</identifier><identifier>DOI: 10.1007/s41660-023-00345-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Absorbers ; Alternative energy sources ; Aluminum ; Carbon ; Convective heat transfer ; Copper ; Economics and Management ; Efficiency ; Energy consumption ; Energy Policy ; Energy resources ; Energy storage ; Engineering ; Finite volume method ; Flat plates ; Fluid flow ; Friction ; Friction factor ; Graphene ; Heat conductivity ; Heat transfer ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Inlet temperature ; Mathematical models ; Nanocomposites ; Nanofluids ; Nanoparticles ; Numerical analysis ; Original Research Paper ; Ray tracing ; Rayleigh number ; Renewable resources ; Reynolds number ; Solar collectors ; Solar energy ; Solar flux ; Sustainable Development ; Thermodynamic efficiency ; Thermodynamic properties ; Titanium ; Titanium dioxide ; Waste Management/Waste Technology ; Water heaters</subject><ispartof>Process integration and optimization for sustainability, 2023-11, Vol.7 (5), p.1333-1343</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</citedby><cites>FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</cites><orcidid>0000-0002-0355-1356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kunwer, Ram</creatorcontrib><creatorcontrib>Donga, Ramesh K.</creatorcontrib><creatorcontrib>Kumar, Ramesh</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><title>Process integration and optimization for sustainability</title><addtitle>Process Integr Optim Sustain</addtitle><description>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO
2
) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO
2
nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO
2
in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number (
Nu
) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number (
Re
) on thermal efficiency and friction factor (
f
) for different volume fractions of TiO
2
in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO
2
in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO
2
at a higher Reynolds number of 1080.</description><subject>Absorbers</subject><subject>Alternative energy sources</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Convective heat transfer</subject><subject>Copper</subject><subject>Economics and Management</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Energy Policy</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Engineering</subject><subject>Finite volume method</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>Friction factor</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inlet temperature</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Original Research Paper</subject><subject>Ray tracing</subject><subject>Rayleigh number</subject><subject>Renewable resources</subject><subject>Reynolds number</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar flux</subject><subject>Sustainable Development</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Waste Management/Waste Technology</subject><subject>Water heaters</subject><issn>2509-4238</issn><issn>2509-4246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhhdRsNS-gKeA59VJspvuHqVaFYoKtngMs9lJm7Ld1GQL6tO7taI3LzNz-P5_4EuScw6XHGB8FTOuFKQgZAogszwtjpKByKFMM5Gp499bFqfJKMY1AIixzArIBsnrfEVhgw2brDCg6Si4T-ycb5m3bNpgx577QezFNxjYxDcNmc4HtoiuXbK567B1uw27cf7d1cQesfW22bn6LDmx2EQa_exhspjezif36ezp7mFyPUuN5GWXkrBCFWOsySJILIg42qoytUFTlaqoOFXELdQo8txyqhFLrozJOYpCUSGHycWhdxv8245ip9d-F9r-pRal4CCVVNBT4kCZ4GMMZPU2uA2GD81B7x3qg0PdO9TfDvW-Wh5CsYfbJYW_6n9SX_ZQdfY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kunwer, Ram</creator><creator>Donga, Ramesh K.</creator><creator>Kumar, Ramesh</creator><creator>Singh, Harpal</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-0355-1356</orcidid></search><sort><creationdate>20231101</creationdate><title>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</title><author>Kunwer, Ram ; Donga, Ramesh K. ; Kumar, Ramesh ; Singh, Harpal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Alternative energy sources</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Convective heat transfer</topic><topic>Copper</topic><topic>Economics and Management</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Energy Policy</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Engineering</topic><topic>Finite volume method</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>Friction factor</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inlet temperature</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Original Research Paper</topic><topic>Ray tracing</topic><topic>Rayleigh number</topic><topic>Renewable resources</topic><topic>Reynolds number</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar flux</topic><topic>Sustainable Development</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Waste Management/Waste Technology</topic><topic>Water heaters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunwer, Ram</creatorcontrib><creatorcontrib>Donga, Ramesh K.</creatorcontrib><creatorcontrib>Kumar, Ramesh</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Process integration and optimization for sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunwer, Ram</au><au>Donga, Ramesh K.</au><au>Kumar, Ramesh</au><au>Singh, Harpal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid</atitle><jtitle>Process integration and optimization for sustainability</jtitle><stitle>Process Integr Optim Sustain</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><spage>1333</spage><epage>1343</epage><pages>1333-1343</pages><issn>2509-4238</issn><eissn>2509-4246</eissn><abstract>The thermal performance of flat plate collectors (FPCs) using titanium dioxide (TiO
2
) nanofluids is analyzed numerically using fluent and SolTrace. The solar ray tracing is performed on SolTrace to obtain the average solar flux on the absorber plate in FPC. The numerical study is conducted on the flat plate solar collector with an aperture width of 200 mm and a single absorber tube of 12.7 mm inner diameter. The numerical simulation on fluent is performed for TiO
2
nanofluids with a percentage volume of 0%, 2%, 3%, and 4% TiO
2
in Therminol as a heat transfer fluid (HTF). The study also includes the effect of the inlet temperature of nanofluids on the thermohydraulic performance of solar FPC. The result shows a 56% drop in thermal efficiency with a temperature increase from 300 to 353 K. However, changes in the Nusselt number (
Nu
) and convective heat transfer rate were found to be negligible. The analysis also includes the effect of the Reynolds number (
Re
) on thermal efficiency and friction factor (
f
) for different volume fractions of TiO
2
in Therminol. A 22.2% increase in thermal efficiency and a 17.5% increase in friction factor are found for a 4% volume fraction of TiO
2
in Therminol at a Reynolds number of 720. However, a 17.3% increase in thermal efficiency is found for a 4% volume fraction of TiO
2
at a higher Reynolds number of 1080.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41660-023-00345-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0355-1356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2509-4238 |
ispartof | Process integration and optimization for sustainability, 2023-11, Vol.7 (5), p.1333-1343 |
issn | 2509-4238 2509-4246 |
language | eng |
recordid | cdi_proquest_journals_2921036360 |
source | Springer Link |
subjects | Absorbers Alternative energy sources Aluminum Carbon Convective heat transfer Copper Economics and Management Efficiency Energy consumption Energy Policy Energy resources Energy storage Engineering Finite volume method Flat plates Fluid flow Friction Friction factor Graphene Heat conductivity Heat transfer Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Inlet temperature Mathematical models Nanocomposites Nanofluids Nanoparticles Numerical analysis Original Research Paper Ray tracing Rayleigh number Renewable resources Reynolds number Solar collectors Solar energy Solar flux Sustainable Development Thermodynamic efficiency Thermodynamic properties Titanium Titanium dioxide Waste Management/Waste Technology Water heaters |
title | Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Characterization%20of%20Flat%20Plate%20Solar%20Collector%20Using%20Titanium%20Dioxide%20Nanofluid&rft.jtitle=Process%20integration%20and%20optimization%20for%20sustainability&rft.au=Kunwer,%20Ram&rft.date=2023-11-01&rft.volume=7&rft.issue=5&rft.spage=1333&rft.epage=1343&rft.pages=1333-1343&rft.issn=2509-4238&rft.eissn=2509-4246&rft_id=info:doi/10.1007/s41660-023-00345-8&rft_dat=%3Cproquest_cross%3E2921036360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e2f2687adefa03a8ee1afbbcdcacb968b1ebe1f0da255f1edaa916cc51a286e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921036360&rft_id=info:pmid/&rfr_iscdi=true |