Loading…

BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images

Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wave...

Full description

Saved in:
Bibliographic Details
Published in:SN computer science 2023-11, Vol.4 (6), p.837, Article 837
Main Authors: Soni, Anil Kumar, Soni, Aradhana, Tamrakar, Chandan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3
container_end_page
container_issue 6
container_start_page 837
container_title SN computer science
container_volume 4
creator Soni, Anil Kumar
Soni, Aradhana
Tamrakar, Chandan
description Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.
doi_str_mv 10.1007/s42979-023-02310-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921077151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921077151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3CyxDmwtuPEPkJpS6UiDq3E0YqddX9Ek2Inh749CUGCE4fVzkoz30pDyC2DewaQP8SU61wnwEU_DBJ2QUY8y1iiNOSXf_Q1mcR4AAAuIU0zOSLrp-L8vqHLY7FFOm_jvq7oKza7uqS-DnRW7YrK4RGrhtaezsryTKdtCP29bm0S2-ALh_QZPbpmwMQbcuWLj4iTnz0mm_lsM31JVm-L5fRxlTimJEu8Amu1t0J7LAF0qSDFTkkmEJ0G5FBamUMmlVTK5ZnVhRQsdQJtWloxJncD9hTqzxZjYw51G6ruo-GaM8hz1qHGhA8uF-oYA3pzCvtjEc6GgenrM0N9pqvOfNdn-pAYQrEzV1sMv-h_Ul-xnXEm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921077151</pqid></control><display><type>article</type><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><source>Springer Link</source><creator>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</creator><creatorcontrib>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</creatorcontrib><description>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-023-02310-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Machine Vision and Augmented Intelligence ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Data Structures and Information Theory ; Decomposition ; Defects ; Eddy current testing ; Eddy currents ; Entropy ; Image enhancement ; Information Systems and Communication Service ; Methods ; Nondestructive testing ; Original Research ; Pattern Recognition and Graphics ; Performance evaluation ; Probability ; Signal to noise ratio ; Software ; Software Engineering/Programming and Operating Systems ; Standard deviation ; Statistical inference ; Steel plates ; Surface defects ; Vision ; Wavelet transforms</subject><ispartof>SN computer science, 2023-11, Vol.4 (6), p.837, Article 837</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</cites><orcidid>0000-0003-1612-6161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soni, Anil Kumar</creatorcontrib><creatorcontrib>Soni, Aradhana</creatorcontrib><creatorcontrib>Tamrakar, Chandan</creatorcontrib><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</description><subject>Advances in Machine Vision and Augmented Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Defects</subject><subject>Eddy current testing</subject><subject>Eddy currents</subject><subject>Entropy</subject><subject>Image enhancement</subject><subject>Information Systems and Communication Service</subject><subject>Methods</subject><subject>Nondestructive testing</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Signal to noise ratio</subject><subject>Software</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Standard deviation</subject><subject>Statistical inference</subject><subject>Steel plates</subject><subject>Surface defects</subject><subject>Vision</subject><subject>Wavelet transforms</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpC3CyxDmwtuPEPkJpS6UiDq3E0YqddX9Ek2Inh749CUGCE4fVzkoz30pDyC2DewaQP8SU61wnwEU_DBJ2QUY8y1iiNOSXf_Q1mcR4AAAuIU0zOSLrp-L8vqHLY7FFOm_jvq7oKza7uqS-DnRW7YrK4RGrhtaezsryTKdtCP29bm0S2-ALh_QZPbpmwMQbcuWLj4iTnz0mm_lsM31JVm-L5fRxlTimJEu8Amu1t0J7LAF0qSDFTkkmEJ0G5FBamUMmlVTK5ZnVhRQsdQJtWloxJncD9hTqzxZjYw51G6ruo-GaM8hz1qHGhA8uF-oYA3pzCvtjEc6GgenrM0N9pqvOfNdn-pAYQrEzV1sMv-h_Ul-xnXEm</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Soni, Anil Kumar</creator><creator>Soni, Aradhana</creator><creator>Tamrakar, Chandan</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1612-6161</orcidid></search><sort><creationdate>20231101</creationdate><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><author>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advances in Machine Vision and Augmented Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Defects</topic><topic>Eddy current testing</topic><topic>Eddy currents</topic><topic>Entropy</topic><topic>Image enhancement</topic><topic>Information Systems and Communication Service</topic><topic>Methods</topic><topic>Nondestructive testing</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Signal to noise ratio</topic><topic>Software</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Standard deviation</topic><topic>Statistical inference</topic><topic>Steel plates</topic><topic>Surface defects</topic><topic>Vision</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soni, Anil Kumar</creatorcontrib><creatorcontrib>Soni, Aradhana</creatorcontrib><creatorcontrib>Tamrakar, Chandan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soni, Anil Kumar</au><au>Soni, Aradhana</au><au>Tamrakar, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>4</volume><issue>6</issue><spage>837</spage><pages>837-</pages><artnum>837</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-023-02310-1</doi><orcidid>https://orcid.org/0000-0003-1612-6161</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2023-11, Vol.4 (6), p.837, Article 837
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2921077151
source Springer Link
subjects Advances in Machine Vision and Augmented Intelligence
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Data Structures and Information Theory
Decomposition
Defects
Eddy current testing
Eddy currents
Entropy
Image enhancement
Information Systems and Communication Service
Methods
Nondestructive testing
Original Research
Pattern Recognition and Graphics
Performance evaluation
Probability
Signal to noise ratio
Software
Software Engineering/Programming and Operating Systems
Standard deviation
Statistical inference
Steel plates
Surface defects
Vision
Wavelet transforms
title BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BayWT%20Image%20Fusion%20Method%20for%20Enhancement%20of%20Eddy%20Current%20Sub-surface%20Defect%20Images&rft.jtitle=SN%20computer%20science&rft.au=Soni,%20Anil%20Kumar&rft.date=2023-11-01&rft.volume=4&rft.issue=6&rft.spage=837&rft.pages=837-&rft.artnum=837&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-023-02310-1&rft_dat=%3Cproquest_cross%3E2921077151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921077151&rft_id=info:pmid/&rfr_iscdi=true