Loading…
BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images
Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wave...
Saved in:
Published in: | SN computer science 2023-11, Vol.4 (6), p.837, Article 837 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3 |
container_end_page | |
container_issue | 6 |
container_start_page | 837 |
container_title | SN computer science |
container_volume | 4 |
creator | Soni, Anil Kumar Soni, Aradhana Tamrakar, Chandan |
description | Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods. |
doi_str_mv | 10.1007/s42979-023-02310-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921077151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921077151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3CyxDmwtuPEPkJpS6UiDq3E0YqddX9Ek2Inh749CUGCE4fVzkoz30pDyC2DewaQP8SU61wnwEU_DBJ2QUY8y1iiNOSXf_Q1mcR4AAAuIU0zOSLrp-L8vqHLY7FFOm_jvq7oKza7uqS-DnRW7YrK4RGrhtaezsryTKdtCP29bm0S2-ALh_QZPbpmwMQbcuWLj4iTnz0mm_lsM31JVm-L5fRxlTimJEu8Amu1t0J7LAF0qSDFTkkmEJ0G5FBamUMmlVTK5ZnVhRQsdQJtWloxJncD9hTqzxZjYw51G6ruo-GaM8hz1qHGhA8uF-oYA3pzCvtjEc6GgenrM0N9pqvOfNdn-pAYQrEzV1sMv-h_Ul-xnXEm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921077151</pqid></control><display><type>article</type><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><source>Springer Link</source><creator>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</creator><creatorcontrib>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</creatorcontrib><description>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-023-02310-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Machine Vision and Augmented Intelligence ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Data Structures and Information Theory ; Decomposition ; Defects ; Eddy current testing ; Eddy currents ; Entropy ; Image enhancement ; Information Systems and Communication Service ; Methods ; Nondestructive testing ; Original Research ; Pattern Recognition and Graphics ; Performance evaluation ; Probability ; Signal to noise ratio ; Software ; Software Engineering/Programming and Operating Systems ; Standard deviation ; Statistical inference ; Steel plates ; Surface defects ; Vision ; Wavelet transforms</subject><ispartof>SN computer science, 2023-11, Vol.4 (6), p.837, Article 837</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</cites><orcidid>0000-0003-1612-6161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soni, Anil Kumar</creatorcontrib><creatorcontrib>Soni, Aradhana</creatorcontrib><creatorcontrib>Tamrakar, Chandan</creatorcontrib><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</description><subject>Advances in Machine Vision and Augmented Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Defects</subject><subject>Eddy current testing</subject><subject>Eddy currents</subject><subject>Entropy</subject><subject>Image enhancement</subject><subject>Information Systems and Communication Service</subject><subject>Methods</subject><subject>Nondestructive testing</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Signal to noise ratio</subject><subject>Software</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Standard deviation</subject><subject>Statistical inference</subject><subject>Steel plates</subject><subject>Surface defects</subject><subject>Vision</subject><subject>Wavelet transforms</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpC3CyxDmwtuPEPkJpS6UiDq3E0YqddX9Ek2Inh749CUGCE4fVzkoz30pDyC2DewaQP8SU61wnwEU_DBJ2QUY8y1iiNOSXf_Q1mcR4AAAuIU0zOSLrp-L8vqHLY7FFOm_jvq7oKza7uqS-DnRW7YrK4RGrhtaezsryTKdtCP29bm0S2-ALh_QZPbpmwMQbcuWLj4iTnz0mm_lsM31JVm-L5fRxlTimJEu8Amu1t0J7LAF0qSDFTkkmEJ0G5FBamUMmlVTK5ZnVhRQsdQJtWloxJncD9hTqzxZjYw51G6ruo-GaM8hz1qHGhA8uF-oYA3pzCvtjEc6GgenrM0N9pqvOfNdn-pAYQrEzV1sMv-h_Ul-xnXEm</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Soni, Anil Kumar</creator><creator>Soni, Aradhana</creator><creator>Tamrakar, Chandan</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1612-6161</orcidid></search><sort><creationdate>20231101</creationdate><title>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</title><author>Soni, Anil Kumar ; Soni, Aradhana ; Tamrakar, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advances in Machine Vision and Augmented Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Defects</topic><topic>Eddy current testing</topic><topic>Eddy currents</topic><topic>Entropy</topic><topic>Image enhancement</topic><topic>Information Systems and Communication Service</topic><topic>Methods</topic><topic>Nondestructive testing</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Signal to noise ratio</topic><topic>Software</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Standard deviation</topic><topic>Statistical inference</topic><topic>Steel plates</topic><topic>Surface defects</topic><topic>Vision</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soni, Anil Kumar</creatorcontrib><creatorcontrib>Soni, Aradhana</creatorcontrib><creatorcontrib>Tamrakar, Chandan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soni, Anil Kumar</au><au>Soni, Aradhana</au><au>Tamrakar, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>4</volume><issue>6</issue><spage>837</spage><pages>837-</pages><artnum>837</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Eddy current (EC) testing is one of the mostly used non-destructive evaluation (NDE) techniques for detection and imaging of defects in conducting material. The process of combination of the multiple images in to a single image to get the clear information is called image fusion. In this paper, wavelet transform and Bayesian principle-based image fusion method (BayWT) is proposed for enhancement of detectability and signal-to-noise ratio (SNR) of EC defect images. BayWT is used for fusion of EC sub-surface defect images generated at different frequencies from AISI type 304L stainless steel plate. The proposed fusion method is evaluated using different image metrics (i.e. SNR, entropy, standard deviation and fusion mutual information) and achieved three-time additional SNR. The performance of the BayWT fusion method is also compared with the commonly used NDE image fusion methods.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-023-02310-1</doi><orcidid>https://orcid.org/0000-0003-1612-6161</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2023-11, Vol.4 (6), p.837, Article 837 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2921077151 |
source | Springer Link |
subjects | Advances in Machine Vision and Augmented Intelligence Computer Imaging Computer Science Computer Systems Organization and Communication Networks Computer vision Data Structures and Information Theory Decomposition Defects Eddy current testing Eddy currents Entropy Image enhancement Information Systems and Communication Service Methods Nondestructive testing Original Research Pattern Recognition and Graphics Performance evaluation Probability Signal to noise ratio Software Software Engineering/Programming and Operating Systems Standard deviation Statistical inference Steel plates Surface defects Vision Wavelet transforms |
title | BayWT Image Fusion Method for Enhancement of Eddy Current Sub-surface Defect Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BayWT%20Image%20Fusion%20Method%20for%20Enhancement%20of%20Eddy%20Current%20Sub-surface%20Defect%20Images&rft.jtitle=SN%20computer%20science&rft.au=Soni,%20Anil%20Kumar&rft.date=2023-11-01&rft.volume=4&rft.issue=6&rft.spage=837&rft.pages=837-&rft.artnum=837&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-023-02310-1&rft_dat=%3Cproquest_cross%3E2921077151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1851-f80bb9fb39fed009d804eed0513eec90e20db570658588c76b9a5314c3eb4db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921077151&rft_id=info:pmid/&rfr_iscdi=true |