Loading…

Energy comparison analysis between direct and indirect dry saturated steam generation, thermally powered by EFPCs’ solar fields

Steam is a key energy vector in the industrial sector and each application requires it at a specific pressure and temperature. In this paper the production of low pressure dry saturated steam for industrial use through high-vacuum flat plate solar collectors (HVFPCs) is discussed. This technology ca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-01, Vol.2685 (1), p.12049
Main Authors: Levrano, A, Anacreonte, A V, Gaudino, E, Vitobello, R, Sparano, S, Russo, R, Musto, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steam is a key energy vector in the industrial sector and each application requires it at a specific pressure and temperature. In this paper the production of low pressure dry saturated steam for industrial use through high-vacuum flat plate solar collectors (HVFPCs) is discussed. This technology can produce steam from solar energy, hybridizing it with existing fossil powered steam generators to obtain significant energy savings and reduce CO 2 emissions. An energy comparison using the 0-D TRNSYS® software between numerical results of different plant configurations is made, which differ in the type of dry saturated steam production device. These devices are necessary as it is not possible to produce steam directly inside collectors. Two possible steam generation methods were analysed: direct steam production, using a Flash vessel, and indirect steam production, using a Kettle reboiler. Finally, each configuration was simulated by imposing a solar field ΔT of 10 °C and 20 °C. Dynamic results show that flash vessel configurations are generally the most efficient, with the same operating parameters, compared to the configurations with Kettle reboiler. Furthermore, configurations with certain ΔT, such as to determine lower operational solar field temperatures, lead to the best results due to the higher HVFPCs’ efficiency.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2685/1/012049