Loading…

Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers

This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics 2024-02, Vol.39 (1), p.239-270
Main Authors: Maturo, Fabrizio, Verde, Rosanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3
cites cdi_FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3
container_end_page 270
container_issue 1
container_start_page 239
container_title Computational statistics
container_volume 39
creator Maturo, Fabrizio
Verde, Rosanna
description This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.
doi_str_mv 10.1007/s00180-022-01259-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921222620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921222620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbLLpUYr_oOBFzyGbTdqUbbYmuwW_vbEr6MnTMDO_N7x5CF1TuKUA9V0GoAoIMEaAMrEg6gTNqKScLKRQp2gGi4qTCiQ7Rxc5b6GQNaMzdFj2uybEENd4jHncu3QI2bXYxBb_aTtn0hEanN3E8DG6jH2fsIsbE-1xsXG44GW4KxOHe4_9GO0Q-mg63JrBYNuZnIMPLuVLdOZNl93VT52j98eHt-UzWb0-vSzvV8RyyQeiqrZyytXUNLVooWkMBe64KD0oIU3FwVLRigpMLbxX5UnZUCllVXtaW8vn6Ga6u0_9t-lBb_sxFUdZswWjjDHJoFBsomzqc07O630KO5M-NQX9na-e8tUlNX3MV6si4pMoFziuXfo9_Y_qC5j7f-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921222620</pqid></control><display><type>article</type><title>Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers</title><source>Springer Nature</source><creator>Maturo, Fabrizio ; Verde, Rosanna</creator><creatorcontrib>Maturo, Fabrizio ; Verde, Rosanna</creatorcontrib><description>This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-022-01259-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Clustering ; Data analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Electrocardiography ; Machine learning ; Mathematical functions ; Mathematics and Statistics ; Original Paper ; Performance enhancement ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics ; Supervised learning</subject><ispartof>Computational statistics, 2024-02, Vol.39 (1), p.239-270</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3</citedby><cites>FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3</cites><orcidid>0000-0002-2362-4970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maturo, Fabrizio</creatorcontrib><creatorcontrib>Verde, Rosanna</creatorcontrib><title>Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.</description><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Electrocardiography</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Performance enhancement</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Supervised learning</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbLLpUYr_oOBFzyGbTdqUbbYmuwW_vbEr6MnTMDO_N7x5CF1TuKUA9V0GoAoIMEaAMrEg6gTNqKScLKRQp2gGi4qTCiQ7Rxc5b6GQNaMzdFj2uybEENd4jHncu3QI2bXYxBb_aTtn0hEanN3E8DG6jH2fsIsbE-1xsXG44GW4KxOHe4_9GO0Q-mg63JrBYNuZnIMPLuVLdOZNl93VT52j98eHt-UzWb0-vSzvV8RyyQeiqrZyytXUNLVooWkMBe64KD0oIU3FwVLRigpMLbxX5UnZUCllVXtaW8vn6Ga6u0_9t-lBb_sxFUdZswWjjDHJoFBsomzqc07O630KO5M-NQX9na-e8tUlNX3MV6si4pMoFziuXfo9_Y_qC5j7f-o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Maturo, Fabrizio</creator><creator>Verde, Rosanna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2362-4970</orcidid></search><sort><creationdate>20240201</creationdate><title>Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers</title><author>Maturo, Fabrizio ; Verde, Rosanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Electrocardiography</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Performance enhancement</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maturo, Fabrizio</creatorcontrib><creatorcontrib>Verde, Rosanna</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maturo, Fabrizio</au><au>Verde, Rosanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>239</spage><epage>270</epage><pages>239-270</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-022-01259-8</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-2362-4970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2024-02, Vol.39 (1), p.239-270
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_2921222620
source Springer Nature
subjects Classification
Clustering
Data analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Electrocardiography
Machine learning
Mathematical functions
Mathematics and Statistics
Original Paper
Performance enhancement
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
Supervised learning
title Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20unsupervised%20and%20supervised%20learning%20techniques%20for%20enhancing%20the%20performance%20of%20functional%20data%20classifiers&rft.jtitle=Computational%20statistics&rft.au=Maturo,%20Fabrizio&rft.date=2024-02-01&rft.volume=39&rft.issue=1&rft.spage=239&rft.epage=270&rft.pages=239-270&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-022-01259-8&rft_dat=%3Cproquest_cross%3E2921222620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-84d4e8e71ab75d0bba103e351ab0856a430c15d540a75ff89436b166647f17cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921222620&rft_id=info:pmid/&rfr_iscdi=true