Loading…

Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning

A method which combines electronegativity difference, CALculation of PHAse Diagrams (CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co–Cr–Fe–Ni–Mo multi-component phase diagram. First, the single-phase region at a certain annealing temperatur...

Full description

Saved in:
Bibliographic Details
Published in:Tungsten 2023-03, Vol.5 (1), p.169-178
Main Authors: Yan, Jiao-Hui, Song, Zi-Jing, Fang, Wei, He, Xin-Bo, Chang, Ruo-Bin, Huang, Shao-Wu, Huang, Jia-Xin, Yu, Hao-Yang, Yin, Fu-Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353
cites cdi_FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353
container_end_page 178
container_issue 1
container_start_page 169
container_title Tungsten
container_volume 5
creator Yan, Jiao-Hui
Song, Zi-Jing
Fang, Wei
He, Xin-Bo
Chang, Ruo-Bin
Huang, Shao-Wu
Huang, Jia-Xin
Yu, Hao-Yang
Yin, Fu-Xing
description A method which combines electronegativity difference, CALculation of PHAse Diagrams (CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co–Cr–Fe–Ni–Mo multi-component phase diagram. First, the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning, to avoid the formation of brittle phases. Then high yield strength points in the single-phase region are selected by electronegativity difference. The yield strength and plastic deformation behavior of the designed Co 14 Cr 30 Ni 50 Mo 6 alloy are measured to evaluate the proposed method. The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space. Meanwhile, the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co 14 Cr 30 Ni 50 Mo 6 alloy. The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.
doi_str_mv 10.1007/s42864-021-00129-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921284301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921284301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353</originalsourceid><addsrcrecordid>eNp9Uc1u1jAQjCqQWrV9AU4rcW3AP4mTHFFEKVIpl3K2HGeTuHLsYPtDyo134K14jD4J_vgQ3LjMrrQzs6udonhFyRtKSPM2VqwVVUkYLQmhrCv3s-KCCUHLlnDx4m_P2vPiOsYnQgiru8xsLoqfvV83H00y3sGI0cwO_ASLmRfYDdoRYgro5rTA5o1LEYyDaNxssdwWFRF6__z9Rx8y3GKGB5Phk4f1YJMpt2CcNpuygBZXdAmUtX6PEPeYcIUhO4yQV-exTsE7nFUy30zabyAtGFY_7k6tRoNWVh-sOt4Zb0C5EValF-MQLKrg8kVXxctJ2YjXf-pl8eX2_WN_V95__vCxf3dfalZ1qcRWCM4mbEY6CD2gYlo37YBiFAqxq5hq64GOaqB1xZuaNFQ0DVca66meOK_5ZfH65LsF__WAMcknfwgur5SsY5S1FSc0s9iJpYOPMeAk8y9WFXZJiTzGJk-xyRyb_B2b3LOIn0Tx-LgZwz_r_6h-AV04pQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921284301</pqid></control><display><type>article</type><title>Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning</title><source>Springer Link</source><creator>Yan, Jiao-Hui ; Song, Zi-Jing ; Fang, Wei ; He, Xin-Bo ; Chang, Ruo-Bin ; Huang, Shao-Wu ; Huang, Jia-Xin ; Yu, Hao-Yang ; Yin, Fu-Xing</creator><creatorcontrib>Yan, Jiao-Hui ; Song, Zi-Jing ; Fang, Wei ; He, Xin-Bo ; Chang, Ruo-Bin ; Huang, Shao-Wu ; Huang, Jia-Xin ; Yu, Hao-Yang ; Yin, Fu-Xing</creatorcontrib><description>A method which combines electronegativity difference, CALculation of PHAse Diagrams (CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co–Cr–Fe–Ni–Mo multi-component phase diagram. First, the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning, to avoid the formation of brittle phases. Then high yield strength points in the single-phase region are selected by electronegativity difference. The yield strength and plastic deformation behavior of the designed Co 14 Cr 30 Ni 50 Mo 6 alloy are measured to evaluate the proposed method. The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space. Meanwhile, the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co 14 Cr 30 Ni 50 Mo 6 alloy. The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.</description><identifier>ISSN: 2661-8028</identifier><identifier>EISSN: 2661-8036</identifier><identifier>DOI: 10.1007/s42864-021-00129-y</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Alloying elements ; Alloys ; Chemistry and Materials Science ; Chromium ; Cobalt ; Datasets ; Decomposition ; Design ; Edge dislocations ; Electronegativity ; Iron ; Machine learning ; Materials Engineering ; Materials Science ; Mathematical analysis ; Mechanical properties ; Metallic Materials ; Molybdenum ; Nickel ; Nuclear Chemistry ; Original Paper ; Particle and Nuclear Physics ; Phase diagrams ; Plastic deformation ; Shear bands ; Support vector machines ; Temperature ; Work hardening ; Yield strength ; Yield stress</subject><ispartof>Tungsten, 2023-03, Vol.5 (1), p.169-178</ispartof><rights>The Nonferrous Metals Society of China 2021</rights><rights>The Nonferrous Metals Society of China 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353</citedby><cites>FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353</cites><orcidid>0000-0002-8616-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Jiao-Hui</creatorcontrib><creatorcontrib>Song, Zi-Jing</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>He, Xin-Bo</creatorcontrib><creatorcontrib>Chang, Ruo-Bin</creatorcontrib><creatorcontrib>Huang, Shao-Wu</creatorcontrib><creatorcontrib>Huang, Jia-Xin</creatorcontrib><creatorcontrib>Yu, Hao-Yang</creatorcontrib><creatorcontrib>Yin, Fu-Xing</creatorcontrib><title>Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning</title><title>Tungsten</title><addtitle>Tungsten</addtitle><description>A method which combines electronegativity difference, CALculation of PHAse Diagrams (CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co–Cr–Fe–Ni–Mo multi-component phase diagram. First, the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning, to avoid the formation of brittle phases. Then high yield strength points in the single-phase region are selected by electronegativity difference. The yield strength and plastic deformation behavior of the designed Co 14 Cr 30 Ni 50 Mo 6 alloy are measured to evaluate the proposed method. The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space. Meanwhile, the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co 14 Cr 30 Ni 50 Mo 6 alloy. The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Design</subject><subject>Edge dislocations</subject><subject>Electronegativity</subject><subject>Iron</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Molybdenum</subject><subject>Nickel</subject><subject>Nuclear Chemistry</subject><subject>Original Paper</subject><subject>Particle and Nuclear Physics</subject><subject>Phase diagrams</subject><subject>Plastic deformation</subject><subject>Shear bands</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Work hardening</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>2661-8028</issn><issn>2661-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1u1jAQjCqQWrV9AU4rcW3AP4mTHFFEKVIpl3K2HGeTuHLsYPtDyo134K14jD4J_vgQ3LjMrrQzs6udonhFyRtKSPM2VqwVVUkYLQmhrCv3s-KCCUHLlnDx4m_P2vPiOsYnQgiru8xsLoqfvV83H00y3sGI0cwO_ASLmRfYDdoRYgro5rTA5o1LEYyDaNxssdwWFRF6__z9Rx8y3GKGB5Phk4f1YJMpt2CcNpuygBZXdAmUtX6PEPeYcIUhO4yQV-exTsE7nFUy30zabyAtGFY_7k6tRoNWVh-sOt4Zb0C5EValF-MQLKrg8kVXxctJ2YjXf-pl8eX2_WN_V95__vCxf3dfalZ1qcRWCM4mbEY6CD2gYlo37YBiFAqxq5hq64GOaqB1xZuaNFQ0DVca66meOK_5ZfH65LsF__WAMcknfwgur5SsY5S1FSc0s9iJpYOPMeAk8y9WFXZJiTzGJk-xyRyb_B2b3LOIn0Tx-LgZwz_r_6h-AV04pQI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Yan, Jiao-Hui</creator><creator>Song, Zi-Jing</creator><creator>Fang, Wei</creator><creator>He, Xin-Bo</creator><creator>Chang, Ruo-Bin</creator><creator>Huang, Shao-Wu</creator><creator>Huang, Jia-Xin</creator><creator>Yu, Hao-Yang</creator><creator>Yin, Fu-Xing</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8616-4609</orcidid></search><sort><creationdate>20230301</creationdate><title>Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning</title><author>Yan, Jiao-Hui ; Song, Zi-Jing ; Fang, Wei ; He, Xin-Bo ; Chang, Ruo-Bin ; Huang, Shao-Wu ; Huang, Jia-Xin ; Yu, Hao-Yang ; Yin, Fu-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Design</topic><topic>Edge dislocations</topic><topic>Electronegativity</topic><topic>Iron</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Molybdenum</topic><topic>Nickel</topic><topic>Nuclear Chemistry</topic><topic>Original Paper</topic><topic>Particle and Nuclear Physics</topic><topic>Phase diagrams</topic><topic>Plastic deformation</topic><topic>Shear bands</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Work hardening</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jiao-Hui</creatorcontrib><creatorcontrib>Song, Zi-Jing</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>He, Xin-Bo</creatorcontrib><creatorcontrib>Chang, Ruo-Bin</creatorcontrib><creatorcontrib>Huang, Shao-Wu</creatorcontrib><creatorcontrib>Huang, Jia-Xin</creatorcontrib><creatorcontrib>Yu, Hao-Yang</creatorcontrib><creatorcontrib>Yin, Fu-Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Tungsten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jiao-Hui</au><au>Song, Zi-Jing</au><au>Fang, Wei</au><au>He, Xin-Bo</au><au>Chang, Ruo-Bin</au><au>Huang, Shao-Wu</au><au>Huang, Jia-Xin</au><au>Yu, Hao-Yang</au><au>Yin, Fu-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning</atitle><jtitle>Tungsten</jtitle><stitle>Tungsten</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>169</spage><epage>178</epage><pages>169-178</pages><issn>2661-8028</issn><eissn>2661-8036</eissn><abstract>A method which combines electronegativity difference, CALculation of PHAse Diagrams (CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co–Cr–Fe–Ni–Mo multi-component phase diagram. First, the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning, to avoid the formation of brittle phases. Then high yield strength points in the single-phase region are selected by electronegativity difference. The yield strength and plastic deformation behavior of the designed Co 14 Cr 30 Ni 50 Mo 6 alloy are measured to evaluate the proposed method. The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space. Meanwhile, the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co 14 Cr 30 Ni 50 Mo 6 alloy. The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42864-021-00129-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8616-4609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2661-8028
ispartof Tungsten, 2023-03, Vol.5 (1), p.169-178
issn 2661-8028
2661-8036
language eng
recordid cdi_proquest_journals_2921284301
source Springer Link
subjects Alloying elements
Alloys
Chemistry and Materials Science
Chromium
Cobalt
Datasets
Decomposition
Design
Edge dislocations
Electronegativity
Iron
Machine learning
Materials Engineering
Materials Science
Mathematical analysis
Mechanical properties
Metallic Materials
Molybdenum
Nickel
Nuclear Chemistry
Original Paper
Particle and Nuclear Physics
Phase diagrams
Plastic deformation
Shear bands
Support vector machines
Temperature
Work hardening
Yield strength
Yield stress
title Composition design of high yield strength points in single-phase Co–Cr–Fe–Ni–Mo multi-principal element alloys system based on electronegativity, thermodynamic calculations, and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20design%20of%20high%20yield%20strength%20points%20in%20single-phase%20Co%E2%80%93Cr%E2%80%93Fe%E2%80%93Ni%E2%80%93Mo%20multi-principal%20element%20alloys%20system%20based%20on%20electronegativity,%20thermodynamic%20calculations,%20and%20machine%20learning&rft.jtitle=Tungsten&rft.au=Yan,%20Jiao-Hui&rft.date=2023-03-01&rft.volume=5&rft.issue=1&rft.spage=169&rft.epage=178&rft.pages=169-178&rft.issn=2661-8028&rft.eissn=2661-8036&rft_id=info:doi/10.1007/s42864-021-00129-y&rft_dat=%3Cproquest_cross%3E2921284301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-e86632fe7d1b6cbea2cc78be6d6aee942a85b1dab1543750716773ace5f5f3353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921284301&rft_id=info:pmid/&rfr_iscdi=true