Loading…

Systematic Review on Learning-Based Spectral CT

Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on radiation and plasma medical sciences 2024-02, Vol.8 (2), p.113-137
Main Authors: Bousse, Alexandre, Kandarpa, Venkata Sai Sundar, Rit, Simon, Perelli, Alessandro, Li, Mengzhou, Wang, Guobao, Zhou, Jian, Wang, Ge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993
cites cdi_FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993
container_end_page 137
container_issue 2
container_start_page 113
container_title IEEE transactions on radiation and plasma medical sciences
container_volume 8
creator Bousse, Alexandre
Kandarpa, Venkata Sai Sundar
Rit, Simon
Perelli, Alessandro
Li, Mengzhou
Wang, Guobao
Zhou, Jian
Wang, Ge
description Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
doi_str_mv 10.1109/TRPMS.2023.3314131
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2921291067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247265</ieee_id><sourcerecordid>2921291067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993</originalsourceid><addsrcrecordid>eNpdkE1P4zAQhi20CBDwBxBCkbiwhxTP2PHHESp2QSoC0XK2nGS8BKVJiVMQ_550263QnjyynvfVzMPYCfARALeXs6fH--kIOYqRECBBwA47QKlsqgUXP7YzwD47jvGVcw7aoJXZHtsXRmplDRywy-ln7Gnu-6pInui9oo-kbZIJ-a6pmj_ptY9UJtMFFX3n62Q8O2K7wdeRjjfvIXv-dTMb36aTh99346tJWgij-lRyRVyojAfMDTeFKkuVl0rLELwtQfMSMxOkFhgQi5wwFGTBYzAmz7S14pD9XPe--Notumruu0_X-srdXk3c6o9LPqQFvMPAXqzZRde-LSn2bl7FguraN9Quo0ObKWWAKz2g5_-hr-2ya4ZLBgoB7YbCNVV0bYwdhe0GwN3Kvvtr363su439IXS2qV7mcyq3kX-uB-B0DVRE9K0RpUaViS9XToUa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921291067</pqid></control><display><type>article</type><title>Systematic Review on Learning-Based Spectral CT</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bousse, Alexandre ; Kandarpa, Venkata Sai Sundar ; Rit, Simon ; Perelli, Alessandro ; Li, Mengzhou ; Wang, Guobao ; Zhou, Jian ; Wang, Ge</creator><creatorcontrib>Bousse, Alexandre ; Kandarpa, Venkata Sai Sundar ; Rit, Simon ; Perelli, Alessandro ; Li, Mengzhou ; Wang, Guobao ; Zhou, Jian ; Wang, Ge</creatorcontrib><description>Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.</description><identifier>ISSN: 2469-7311</identifier><identifier>EISSN: 2469-7303</identifier><identifier>DOI: 10.1109/TRPMS.2023.3314131</identifier><identifier>PMID: 38476981</identifier><identifier>CODEN: ITRPFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence (AI) ; Biomedical imaging ; Computed tomography ; Computer Science ; Deep learning ; dual-energy CT (DECT) ; Image reconstruction ; Image synthesis ; Machine learning ; Medical Imaging ; photon-counting CT (PCCT) ; State-of-the-art reviews ; X-ray imaging</subject><ispartof>IEEE transactions on radiation and plasma medical sciences, 2024-02, Vol.8 (2), p.113-137</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993</citedby><cites>FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993</cites><orcidid>0000-0003-2530-1013 ; 0000-0001-6526-1533 ; 0000-0002-2656-7705 ; 0000-0002-0192-5422 ; 0000-0001-9712-6301 ; 0000-0002-0511-2293 ; 0000-0001-6567-1444 ; 0000-0003-0815-0604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38476981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04073231$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Kandarpa, Venkata Sai Sundar</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><creatorcontrib>Perelli, Alessandro</creatorcontrib><creatorcontrib>Li, Mengzhou</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>Systematic Review on Learning-Based Spectral CT</title><title>IEEE transactions on radiation and plasma medical sciences</title><addtitle>TRPMS</addtitle><addtitle>IEEE Trans Radiat Plasma Med Sci</addtitle><description>Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>dual-energy CT (DECT)</subject><subject>Image reconstruction</subject><subject>Image synthesis</subject><subject>Machine learning</subject><subject>Medical Imaging</subject><subject>photon-counting CT (PCCT)</subject><subject>State-of-the-art reviews</subject><subject>X-ray imaging</subject><issn>2469-7311</issn><issn>2469-7303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1P4zAQhi20CBDwBxBCkbiwhxTP2PHHESp2QSoC0XK2nGS8BKVJiVMQ_550263QnjyynvfVzMPYCfARALeXs6fH--kIOYqRECBBwA47QKlsqgUXP7YzwD47jvGVcw7aoJXZHtsXRmplDRywy-ln7Gnu-6pInui9oo-kbZIJ-a6pmj_ptY9UJtMFFX3n62Q8O2K7wdeRjjfvIXv-dTMb36aTh99346tJWgij-lRyRVyojAfMDTeFKkuVl0rLELwtQfMSMxOkFhgQi5wwFGTBYzAmz7S14pD9XPe--Notumruu0_X-srdXk3c6o9LPqQFvMPAXqzZRde-LSn2bl7FguraN9Quo0ObKWWAKz2g5_-hr-2ya4ZLBgoB7YbCNVV0bYwdhe0GwN3Kvvtr363su439IXS2qV7mcyq3kX-uB-B0DVRE9K0RpUaViS9XToUa</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bousse, Alexandre</creator><creator>Kandarpa, Venkata Sai Sundar</creator><creator>Rit, Simon</creator><creator>Perelli, Alessandro</creator><creator>Li, Mengzhou</creator><creator>Wang, Guobao</creator><creator>Zhou, Jian</creator><creator>Wang, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0001-6526-1533</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-0192-5422</orcidid><orcidid>https://orcid.org/0000-0001-9712-6301</orcidid><orcidid>https://orcid.org/0000-0002-0511-2293</orcidid><orcidid>https://orcid.org/0000-0001-6567-1444</orcidid><orcidid>https://orcid.org/0000-0003-0815-0604</orcidid></search><sort><creationdate>20240201</creationdate><title>Systematic Review on Learning-Based Spectral CT</title><author>Bousse, Alexandre ; Kandarpa, Venkata Sai Sundar ; Rit, Simon ; Perelli, Alessandro ; Li, Mengzhou ; Wang, Guobao ; Zhou, Jian ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>dual-energy CT (DECT)</topic><topic>Image reconstruction</topic><topic>Image synthesis</topic><topic>Machine learning</topic><topic>Medical Imaging</topic><topic>photon-counting CT (PCCT)</topic><topic>State-of-the-art reviews</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Kandarpa, Venkata Sai Sundar</creatorcontrib><creatorcontrib>Rit, Simon</creatorcontrib><creatorcontrib>Perelli, Alessandro</creatorcontrib><creatorcontrib>Li, Mengzhou</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousse, Alexandre</au><au>Kandarpa, Venkata Sai Sundar</au><au>Rit, Simon</au><au>Perelli, Alessandro</au><au>Li, Mengzhou</au><au>Wang, Guobao</au><au>Zhou, Jian</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Review on Learning-Based Spectral CT</atitle><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle><stitle>TRPMS</stitle><addtitle>IEEE Trans Radiat Plasma Med Sci</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>8</volume><issue>2</issue><spage>113</spage><epage>137</epage><pages>113-137</pages><issn>2469-7311</issn><eissn>2469-7303</eissn><coden>ITRPFI</coden><abstract>Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38476981</pmid><doi>10.1109/TRPMS.2023.3314131</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2530-1013</orcidid><orcidid>https://orcid.org/0000-0001-6526-1533</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-0192-5422</orcidid><orcidid>https://orcid.org/0000-0001-9712-6301</orcidid><orcidid>https://orcid.org/0000-0002-0511-2293</orcidid><orcidid>https://orcid.org/0000-0001-6567-1444</orcidid><orcidid>https://orcid.org/0000-0003-0815-0604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-7311
ispartof IEEE transactions on radiation and plasma medical sciences, 2024-02, Vol.8 (2), p.113-137
issn 2469-7311
2469-7303
language eng
recordid cdi_proquest_journals_2921291067
source IEEE Electronic Library (IEL) Journals
subjects Artificial intelligence
Artificial intelligence (AI)
Biomedical imaging
Computed tomography
Computer Science
Deep learning
dual-energy CT (DECT)
Image reconstruction
Image synthesis
Machine learning
Medical Imaging
photon-counting CT (PCCT)
State-of-the-art reviews
X-ray imaging
title Systematic Review on Learning-Based Spectral CT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Review%20on%20Learning-Based%20Spectral%20CT&rft.jtitle=IEEE%20transactions%20on%20radiation%20and%20plasma%20medical%20sciences&rft.au=Bousse,%20Alexandre&rft.date=2024-02-01&rft.volume=8&rft.issue=2&rft.spage=113&rft.epage=137&rft.pages=113-137&rft.issn=2469-7311&rft.eissn=2469-7303&rft.coden=ITRPFI&rft_id=info:doi/10.1109/TRPMS.2023.3314131&rft_dat=%3Cproquest_ieee_%3E2921291067%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-406e03650f2b808c6dd6bd674ffa9d170d258f4732f22cbe2fce91a2f88b57993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921291067&rft_id=info:pmid/38476981&rft_ieee_id=10247265&rfr_iscdi=true