Loading…

Load Transfer Acting in Basal Reinforced Piled Embankments: a Numerical Approach

Soil reinforcement by geosynthetics is an easy and economic technique to limit the surface settlements of piled embankments over soft ground. The design of such structures is based on the understanding of several assumptions, including due to the fact that soil arching is noted as a main load transf...

Full description

Saved in:
Bibliographic Details
Published in:Transportation infrastructure geotechnology 2024-02, Vol.11 (1), p.1-21
Main Authors: Vo, Dai-Nhat, Pham, Minh-Tuan, Le, Van-An, To, Viet-Nam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil reinforcement by geosynthetics is an easy and economic technique to limit the surface settlements of piled embankments over soft ground. The design of such structures is based on the understanding of several assumptions, including due to the fact that soil arching is noted as a main load transfer mechanism. Unfortunately, soil arching and load transfer are complicated phenomena that can be influenced by many factors. In this study, a series of numerical modeling based on the finite element simulations has been carried out based on an experimental study. The soil arching within the embankment reproduced by a scale test has been well modeled as its shape is noted as a concentric ellipse. The geosynthetic behavior, the effect of top load, and the characteristics of embankment and pile have been taken into account in the numerical investigation to clarify the influences on load transfer efficiency. The results indicated that the load transfer phenomenon is not uniform as it can be affected significantly by embankment height, friction angle of fill soil, top load, and the distance between piles. The tensile membrane effects caused by geosynthetics have a considerable relationship to load transfer.
ISSN:2196-7202
2196-7210
DOI:10.1007/s40515-022-00271-1