Loading…
Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction
Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of cont...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2024-02, Vol.26 (3), p.1454-1461 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1461 |
container_issue | 3 |
container_start_page | 1454 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 26 |
creator | Zhou, Liyuan Tian, Qingyong Shang, Xiaoqing Zhao, Yanming Yao, Weijing Liu, Hongpo Xu, Qun |
description | Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE. |
doi_str_mv | 10.1039/d3gc03778a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922028049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922028049</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923</originalsourceid><addsrcrecordid>eNo9jU9LAzEUxIMoWKsXP0HA89rkvXT_HGVRKyi9VPBWsslLu3VNajar1E_vQsXTzDDMbxi7luJWCqxmFjdGYFGU-oRNpMoxq6AQp_8-h3N20fc7IaQscjVhPwtKFEOf4mDSEImb4I-hDZ4HN-Yv3ZFPPMSN9q3hLuoP-g7xvZ-tWqwhe3kjT9yFyLftZpuRc61pyZsDp45MisHopLtDGrf1Engke6RfsjOnu56u_nTKXh_uV_Uie14-PtV3z9lelpiyEqCoqkYrpexcSZfPCzvHBiQaY0FKRGpMjqaxubMkgAQZQaVVwmmCCnDKbo7cfQyfA_VpvQtD9OPleqxBQClUhb-HpGE1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922028049</pqid></control><display><type>article</type><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><source>Royal Society of Chemistry</source><creator>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</creator><creatorcontrib>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</creatorcontrib><description>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc03778a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reduction ; Controllability ; Covalence ; Electron transfer ; Functional materials ; Heterojunctions ; Heterostructures ; Interlayers ; Ion transport ; Mass transfer ; MXenes ; Porphyrins</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-02, Vol.26 (3), p.1454-1461</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhou, Liyuan</creatorcontrib><creatorcontrib>Tian, Qingyong</creatorcontrib><creatorcontrib>Shang, Xiaoqing</creatorcontrib><creatorcontrib>Zhao, Yanming</creatorcontrib><creatorcontrib>Yao, Weijing</creatorcontrib><creatorcontrib>Liu, Hongpo</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</description><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Controllability</subject><subject>Covalence</subject><subject>Electron transfer</subject><subject>Functional materials</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Ion transport</subject><subject>Mass transfer</subject><subject>MXenes</subject><subject>Porphyrins</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU9LAzEUxIMoWKsXP0HA89rkvXT_HGVRKyi9VPBWsslLu3VNajar1E_vQsXTzDDMbxi7luJWCqxmFjdGYFGU-oRNpMoxq6AQp_8-h3N20fc7IaQscjVhPwtKFEOf4mDSEImb4I-hDZ4HN-Yv3ZFPPMSN9q3hLuoP-g7xvZ-tWqwhe3kjT9yFyLftZpuRc61pyZsDp45MisHopLtDGrf1Engke6RfsjOnu56u_nTKXh_uV_Uie14-PtV3z9lelpiyEqCoqkYrpexcSZfPCzvHBiQaY0FKRGpMjqaxubMkgAQZQaVVwmmCCnDKbo7cfQyfA_VpvQtD9OPleqxBQClUhb-HpGE1</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Zhou, Liyuan</creator><creator>Tian, Qingyong</creator><creator>Shang, Xiaoqing</creator><creator>Zhao, Yanming</creator><creator>Yao, Weijing</creator><creator>Liu, Hongpo</creator><creator>Xu, Qun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope></search><sort><creationdate>20240205</creationdate><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><author>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Controllability</topic><topic>Covalence</topic><topic>Electron transfer</topic><topic>Functional materials</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Ion transport</topic><topic>Mass transfer</topic><topic>MXenes</topic><topic>Porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Liyuan</creatorcontrib><creatorcontrib>Tian, Qingyong</creatorcontrib><creatorcontrib>Shang, Xiaoqing</creatorcontrib><creatorcontrib>Zhao, Yanming</creatorcontrib><creatorcontrib>Yao, Weijing</creatorcontrib><creatorcontrib>Liu, Hongpo</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Liyuan</au><au>Tian, Qingyong</au><au>Shang, Xiaoqing</au><au>Zhao, Yanming</au><au>Yao, Weijing</au><au>Liu, Hongpo</au><au>Xu, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-02-05</date><risdate>2024</risdate><volume>26</volume><issue>3</issue><spage>1454</spage><epage>1461</epage><pages>1454-1461</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc03778a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2024-02, Vol.26 (3), p.1454-1461 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_proquest_journals_2922028049 |
source | Royal Society of Chemistry |
subjects | Carbon dioxide Chemical reduction Controllability Covalence Electron transfer Functional materials Heterojunctions Heterostructures Interlayers Ion transport Mass transfer MXenes Porphyrins |
title | Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructure%20construction%20of%20covalent%20organic%20frameworks/Ti3C2-MXene%20for%20high-efficiency%20electrocatalytic%20CO2%20reduction&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Zhou,%20Liyuan&rft.date=2024-02-05&rft.volume=26&rft.issue=3&rft.spage=1454&rft.epage=1461&rft.pages=1454-1461&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc03778a&rft_dat=%3Cproquest%3E2922028049%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922028049&rft_id=info:pmid/&rfr_iscdi=true |