Loading…

Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction

Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of cont...

Full description

Saved in:
Bibliographic Details
Published in:Green chemistry : an international journal and green chemistry resource : GC 2024-02, Vol.26 (3), p.1454-1461
Main Authors: Zhou, Liyuan, Tian, Qingyong, Shang, Xiaoqing, Zhao, Yanming, Yao, Weijing, Liu, Hongpo, Xu, Qun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1461
container_issue 3
container_start_page 1454
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Zhou, Liyuan
Tian, Qingyong
Shang, Xiaoqing
Zhao, Yanming
Yao, Weijing
Liu, Hongpo
Xu, Qun
description Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.
doi_str_mv 10.1039/d3gc03778a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922028049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922028049</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923</originalsourceid><addsrcrecordid>eNo9jU9LAzEUxIMoWKsXP0HA89rkvXT_HGVRKyi9VPBWsslLu3VNajar1E_vQsXTzDDMbxi7luJWCqxmFjdGYFGU-oRNpMoxq6AQp_8-h3N20fc7IaQscjVhPwtKFEOf4mDSEImb4I-hDZ4HN-Yv3ZFPPMSN9q3hLuoP-g7xvZ-tWqwhe3kjT9yFyLftZpuRc61pyZsDp45MisHopLtDGrf1Engke6RfsjOnu56u_nTKXh_uV_Uie14-PtV3z9lelpiyEqCoqkYrpexcSZfPCzvHBiQaY0FKRGpMjqaxubMkgAQZQaVVwmmCCnDKbo7cfQyfA_VpvQtD9OPleqxBQClUhb-HpGE1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922028049</pqid></control><display><type>article</type><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><source>Royal Society of Chemistry</source><creator>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</creator><creatorcontrib>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</creatorcontrib><description>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc03778a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reduction ; Controllability ; Covalence ; Electron transfer ; Functional materials ; Heterojunctions ; Heterostructures ; Interlayers ; Ion transport ; Mass transfer ; MXenes ; Porphyrins</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-02, Vol.26 (3), p.1454-1461</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhou, Liyuan</creatorcontrib><creatorcontrib>Tian, Qingyong</creatorcontrib><creatorcontrib>Shang, Xiaoqing</creatorcontrib><creatorcontrib>Zhao, Yanming</creatorcontrib><creatorcontrib>Yao, Weijing</creatorcontrib><creatorcontrib>Liu, Hongpo</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</description><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Controllability</subject><subject>Covalence</subject><subject>Electron transfer</subject><subject>Functional materials</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Ion transport</subject><subject>Mass transfer</subject><subject>MXenes</subject><subject>Porphyrins</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU9LAzEUxIMoWKsXP0HA89rkvXT_HGVRKyi9VPBWsslLu3VNajar1E_vQsXTzDDMbxi7luJWCqxmFjdGYFGU-oRNpMoxq6AQp_8-h3N20fc7IaQscjVhPwtKFEOf4mDSEImb4I-hDZ4HN-Yv3ZFPPMSN9q3hLuoP-g7xvZ-tWqwhe3kjT9yFyLftZpuRc61pyZsDp45MisHopLtDGrf1Engke6RfsjOnu56u_nTKXh_uV_Uie14-PtV3z9lelpiyEqCoqkYrpexcSZfPCzvHBiQaY0FKRGpMjqaxubMkgAQZQaVVwmmCCnDKbo7cfQyfA_VpvQtD9OPleqxBQClUhb-HpGE1</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Zhou, Liyuan</creator><creator>Tian, Qingyong</creator><creator>Shang, Xiaoqing</creator><creator>Zhao, Yanming</creator><creator>Yao, Weijing</creator><creator>Liu, Hongpo</creator><creator>Xu, Qun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope></search><sort><creationdate>20240205</creationdate><title>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</title><author>Zhou, Liyuan ; Tian, Qingyong ; Shang, Xiaoqing ; Zhao, Yanming ; Yao, Weijing ; Liu, Hongpo ; Xu, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Controllability</topic><topic>Covalence</topic><topic>Electron transfer</topic><topic>Functional materials</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Ion transport</topic><topic>Mass transfer</topic><topic>MXenes</topic><topic>Porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Liyuan</creatorcontrib><creatorcontrib>Tian, Qingyong</creatorcontrib><creatorcontrib>Shang, Xiaoqing</creatorcontrib><creatorcontrib>Zhao, Yanming</creatorcontrib><creatorcontrib>Yao, Weijing</creatorcontrib><creatorcontrib>Liu, Hongpo</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Liyuan</au><au>Tian, Qingyong</au><au>Shang, Xiaoqing</au><au>Zhao, Yanming</au><au>Yao, Weijing</au><au>Liu, Hongpo</au><au>Xu, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-02-05</date><risdate>2024</risdate><volume>26</volume><issue>3</issue><spage>1454</spage><epage>1461</epage><pages>1454-1461</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Covalent organic frameworks (COFs), as typical organic functional materials, have shown promising potential for application in photo/electrocatalysis, especially in the electrocatalytic CO2 reduction reaction (CO2RR). COFs can ensure effective CO2 adsorption and rapid mass transfer by virtue of controllable active sites and a large specific surface area. However, the inefficient interlayer conductivity of most COFs leads to a low electron transfer rate that restricts their practical applications. In this work, porphyrin-based covalent organic framework nanosheets (Por-COF) were vertically grown on the modified MXene surface for efficient electrocatalytic CO2RR. The large exposed MXene surface serves as a carrier “bridge” for dispersed COFs, which can endow heterojunctions with more active sites and fast ion transport channels. The optimal sample can exhibit superior efficient CO2RR performance, in which the faradaic efficiency of the CO2-to-CO conversion was 97.28% at −0.6 V vs. RHE, and the bias current density was −9.33 mA cm−2 at −1.0 V vs. RHE.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc03778a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-02, Vol.26 (3), p.1454-1461
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2922028049
source Royal Society of Chemistry
subjects Carbon dioxide
Chemical reduction
Controllability
Covalence
Electron transfer
Functional materials
Heterojunctions
Heterostructures
Interlayers
Ion transport
Mass transfer
MXenes
Porphyrins
title Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructure%20construction%20of%20covalent%20organic%20frameworks/Ti3C2-MXene%20for%20high-efficiency%20electrocatalytic%20CO2%20reduction&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Zhou,%20Liyuan&rft.date=2024-02-05&rft.volume=26&rft.issue=3&rft.spage=1454&rft.epage=1461&rft.pages=1454-1461&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc03778a&rft_dat=%3Cproquest%3E2922028049%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-822799ba444d541f657d53b213ccd21133ebc63cbd6fde02e0ec0e8d40fae2923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922028049&rft_id=info:pmid/&rfr_iscdi=true