Loading…
Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform
Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and expone...
Saved in:
Published in: | International journal of dynamics and control 2024, Vol.12 (1), p.271-282 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3 |
container_end_page | 282 |
container_issue | 1 |
container_start_page | 271 |
container_title | International journal of dynamics and control |
container_volume | 12 |
creator | Yadav, Lokesh Kumar Agarwal, Garima Gour, Murli Manohar Kumari, Manjeet |
description | Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited. |
doi_str_mv | 10.1007/s40435-023-01246-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922078664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922078664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTNG3S47L4DxY8qOAtZNPU7dptukm7bl_MF_DFTK3oTRiYYfh9w3wfQucELgkAv_IMWJxEQOMICGVpdDhCE0qyJKJpJo5_Z_FyimbebwCAEgaUZROk5rWq-rbUqsKqaZxVeo1bi33b5T1-N-qt6nFt68oOROGUbksbJPhRr93nR17Wr8Zhs-vUsMf7UgV6byrcOlX7wrrtGTopVOXN7KdP0fPN9dPiLlo-3N4v5stIxyRrozg3hSFcc8VC6ZVmMXAQK1FQwXMaSlBFUiOA5ynhwnCWMJOwhDBNRK7iKboY7wYTu874Vm5s58KrXtKMUuAiTVmg6EhpZ713ppCNK7fK9ZKAHNKUY5oypCm_05SHIIpHkQ_wYPjv9D-qL6_Teig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922078664</pqid></control><display><type>article</type><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><source>Springer Nature</source><creator>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</creator><creatorcontrib>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</creatorcontrib><description>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-023-01246-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Dynamical Systems ; Engineering ; Exact solutions ; Schrodinger equation ; Solitary waves ; Vibration</subject><ispartof>International journal of dynamics and control, 2024, Vol.12 (1), p.271-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</citedby><cites>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yadav, Lokesh Kumar</creatorcontrib><creatorcontrib>Agarwal, Garima</creatorcontrib><creatorcontrib>Gour, Murli Manohar</creatorcontrib><creatorcontrib>Kumari, Manjeet</creatorcontrib><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTNG3S47L4DxY8qOAtZNPU7dptukm7bl_MF_DFTK3oTRiYYfh9w3wfQucELgkAv_IMWJxEQOMICGVpdDhCE0qyJKJpJo5_Z_FyimbebwCAEgaUZROk5rWq-rbUqsKqaZxVeo1bi33b5T1-N-qt6nFt68oOROGUbksbJPhRr93nR17Wr8Zhs-vUsMf7UgV6byrcOlX7wrrtGTopVOXN7KdP0fPN9dPiLlo-3N4v5stIxyRrozg3hSFcc8VC6ZVmMXAQK1FQwXMaSlBFUiOA5ynhwnCWMJOwhDBNRK7iKboY7wYTu874Vm5s58KrXtKMUuAiTVmg6EhpZ713ppCNK7fK9ZKAHNKUY5oypCm_05SHIIpHkQ_wYPjv9D-qL6_Teig</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yadav, Lokesh Kumar</creator><creator>Agarwal, Garima</creator><creator>Gour, Murli Manohar</creator><creator>Kumari, Manjeet</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><author>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Lokesh Kumar</creatorcontrib><creatorcontrib>Agarwal, Garima</creatorcontrib><creatorcontrib>Gour, Murli Manohar</creatorcontrib><creatorcontrib>Kumari, Manjeet</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Lokesh Kumar</au><au>Agarwal, Garima</au><au>Gour, Murli Manohar</au><au>Kumari, Manjeet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-023-01246-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2024, Vol.12 (1), p.271-282 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2922078664 |
source | Springer Nature |
subjects | Complexity Control Control and Systems Theory Dynamical Systems Engineering Exact solutions Schrodinger equation Solitary waves Vibration |
title | Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20approach%20to%20study%20weakly%20nonlocal%20fractional%20Schr%C3%B6dinger%20equation%20via%20novel%20transform&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Yadav,%20Lokesh%20Kumar&rft.date=2024&rft.volume=12&rft.issue=1&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-023-01246-x&rft_dat=%3Cproquest_cross%3E2922078664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922078664&rft_id=info:pmid/&rfr_iscdi=true |