Loading…

Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform

Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and expone...

Full description

Saved in:
Bibliographic Details
Published in:International journal of dynamics and control 2024, Vol.12 (1), p.271-282
Main Authors: Yadav, Lokesh Kumar, Agarwal, Garima, Gour, Murli Manohar, Kumari, Manjeet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3
cites cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3
container_end_page 282
container_issue 1
container_start_page 271
container_title International journal of dynamics and control
container_volume 12
creator Yadav, Lokesh Kumar
Agarwal, Garima
Gour, Murli Manohar
Kumari, Manjeet
description Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.
doi_str_mv 10.1007/s40435-023-01246-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922078664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922078664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTNG3S47L4DxY8qOAtZNPU7dptukm7bl_MF_DFTK3oTRiYYfh9w3wfQucELgkAv_IMWJxEQOMICGVpdDhCE0qyJKJpJo5_Z_FyimbebwCAEgaUZROk5rWq-rbUqsKqaZxVeo1bi33b5T1-N-qt6nFt68oOROGUbksbJPhRr93nR17Wr8Zhs-vUsMf7UgV6byrcOlX7wrrtGTopVOXN7KdP0fPN9dPiLlo-3N4v5stIxyRrozg3hSFcc8VC6ZVmMXAQK1FQwXMaSlBFUiOA5ynhwnCWMJOwhDBNRK7iKboY7wYTu874Vm5s58KrXtKMUuAiTVmg6EhpZ713ppCNK7fK9ZKAHNKUY5oypCm_05SHIIpHkQ_wYPjv9D-qL6_Teig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922078664</pqid></control><display><type>article</type><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><source>Springer Nature</source><creator>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</creator><creatorcontrib>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</creatorcontrib><description>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-023-01246-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Dynamical Systems ; Engineering ; Exact solutions ; Schrodinger equation ; Solitary waves ; Vibration</subject><ispartof>International journal of dynamics and control, 2024, Vol.12 (1), p.271-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</citedby><cites>FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yadav, Lokesh Kumar</creatorcontrib><creatorcontrib>Agarwal, Garima</creatorcontrib><creatorcontrib>Gour, Murli Manohar</creatorcontrib><creatorcontrib>Kumari, Manjeet</creatorcontrib><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTNG3S47L4DxY8qOAtZNPU7dptukm7bl_MF_DFTK3oTRiYYfh9w3wfQucELgkAv_IMWJxEQOMICGVpdDhCE0qyJKJpJo5_Z_FyimbebwCAEgaUZROk5rWq-rbUqsKqaZxVeo1bi33b5T1-N-qt6nFt68oOROGUbksbJPhRr93nR17Wr8Zhs-vUsMf7UgV6byrcOlX7wrrtGTopVOXN7KdP0fPN9dPiLlo-3N4v5stIxyRrozg3hSFcc8VC6ZVmMXAQK1FQwXMaSlBFUiOA5ynhwnCWMJOwhDBNRK7iKboY7wYTu874Vm5s58KrXtKMUuAiTVmg6EhpZ713ppCNK7fK9ZKAHNKUY5oypCm_05SHIIpHkQ_wYPjv9D-qL6_Teig</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yadav, Lokesh Kumar</creator><creator>Agarwal, Garima</creator><creator>Gour, Murli Manohar</creator><creator>Kumari, Manjeet</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</title><author>Yadav, Lokesh Kumar ; Agarwal, Garima ; Gour, Murli Manohar ; Kumari, Manjeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Lokesh Kumar</creatorcontrib><creatorcontrib>Agarwal, Garima</creatorcontrib><creatorcontrib>Gour, Murli Manohar</creatorcontrib><creatorcontrib>Kumari, Manjeet</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Lokesh Kumar</au><au>Agarwal, Garima</au><au>Gour, Murli Manohar</au><au>Kumari, Manjeet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Our main goal is to examined weakly nonlocal Schrödinger equation incorporating nonlinearity of the parabolic law and external potential using the Shehu transform decomposition method. The proposed method contributes the exact and analytical solutions for the bright soliton, dark soliton, and exponential solutions. The simulated outcomes reveal that only a few number of terms are required to achieve accurate and trustworthy approximations. Additionally, the physical behaviour of STDM solutions have been illustrated in plots for various fractional orders, and the numerical outcomes are also exhibited.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-023-01246-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2024, Vol.12 (1), p.271-282
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2922078664
source Springer Nature
subjects Complexity
Control
Control and Systems Theory
Dynamical Systems
Engineering
Exact solutions
Schrodinger equation
Solitary waves
Vibration
title Analytical approach to study weakly nonlocal fractional Schrödinger equation via novel transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20approach%20to%20study%20weakly%20nonlocal%20fractional%20Schr%C3%B6dinger%20equation%20via%20novel%20transform&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Yadav,%20Lokesh%20Kumar&rft.date=2024&rft.volume=12&rft.issue=1&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-023-01246-x&rft_dat=%3Cproquest_cross%3E2922078664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3defe17c7a47a4cbc430708b8f287d27d282a16e807d6178e7454e54514c18da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922078664&rft_id=info:pmid/&rfr_iscdi=true