Loading…
ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data
We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Martin-Turrero, Carmen Bouvier, Maxence Breitenstein, Manuel Zanuttigh, Pietro Parret, Vincent |
description | We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922281367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922281367</sourcerecordid><originalsourceid>FETCH-proquest_journals_29222813673</originalsourceid><addsrcrecordid>eNqNi8uKwkAQRRthQJnJPzS4bojVvnfqRFzoRnsvpZbaklTH6mQY_94MzMKlq8vhntNSHbC2Z8Z9gLZKYrylaQrDEQwGtqN-Z-ts64wT5HgOUpBM9Vz86eL5omfxwcerBA511MgnvXvhDR6vnkmvCYX_7CbXW8LcOF-Qzn6IK3PASE1WYuWDcVSUQTDX31jhl_o4Yx4p-d9P1V1mbrEypYR7TbHa30It3Fx7mADAuGeHI_ue9QQT8k0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922281367</pqid></control><display><type>article</type><title>ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data</title><source>Publicly Available Content Database</source><creator>Martin-Turrero, Carmen ; Bouvier, Maxence ; Breitenstein, Manuel ; Zanuttigh, Pietro ; Parret, Vincent</creator><creatorcontrib>Martin-Turrero, Carmen ; Bouvier, Maxence ; Breitenstein, Manuel ; Zanuttigh, Pietro ; Parret, Vincent</creatorcontrib><description>We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Embedding ; Gesture recognition ; Machine learning ; Object recognition ; Sampling ; Spatiotemporal data ; Synchronous machines</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2922281367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Martin-Turrero, Carmen</creatorcontrib><creatorcontrib>Bouvier, Maxence</creatorcontrib><creatorcontrib>Breitenstein, Manuel</creatorcontrib><creatorcontrib>Zanuttigh, Pietro</creatorcontrib><creatorcontrib>Parret, Vincent</creatorcontrib><title>ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data</title><title>arXiv.org</title><description>We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.</description><subject>Embedding</subject><subject>Gesture recognition</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Sampling</subject><subject>Spatiotemporal data</subject><subject>Synchronous machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8uKwkAQRRthQJnJPzS4bojVvnfqRFzoRnsvpZbaklTH6mQY_94MzMKlq8vhntNSHbC2Z8Z9gLZKYrylaQrDEQwGtqN-Z-ts64wT5HgOUpBM9Vz86eL5omfxwcerBA511MgnvXvhDR6vnkmvCYX_7CbXW8LcOF-Qzn6IK3PASE1WYuWDcVSUQTDX31jhl_o4Yx4p-d9P1V1mbrEypYR7TbHa30It3Fx7mADAuGeHI_ue9QQT8k0o</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Martin-Turrero, Carmen</creator><creator>Bouvier, Maxence</creator><creator>Breitenstein, Manuel</creator><creator>Zanuttigh, Pietro</creator><creator>Parret, Vincent</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240730</creationdate><title>ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data</title><author>Martin-Turrero, Carmen ; Bouvier, Maxence ; Breitenstein, Manuel ; Zanuttigh, Pietro ; Parret, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29222813673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Embedding</topic><topic>Gesture recognition</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Sampling</topic><topic>Spatiotemporal data</topic><topic>Synchronous machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Martin-Turrero, Carmen</creatorcontrib><creatorcontrib>Bouvier, Maxence</creatorcontrib><creatorcontrib>Breitenstein, Manuel</creatorcontrib><creatorcontrib>Zanuttigh, Pietro</creatorcontrib><creatorcontrib>Parret, Vincent</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin-Turrero, Carmen</au><au>Bouvier, Maxence</au><au>Breitenstein, Manuel</au><au>Zanuttigh, Pietro</au><au>Parret, Vincent</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data</atitle><jtitle>arXiv.org</jtitle><date>2024-07-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2922281367 |
source | Publicly Available Content Database |
subjects | Embedding Gesture recognition Machine learning Object recognition Sampling Spatiotemporal data Synchronous machines |
title | ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ALERT-Transformer:%20Bridging%20Asynchronous%20and%20Synchronous%20Machine%20Learning%20for%20Real-Time%20Event-based%20Spatio-Temporal%20Data&rft.jtitle=arXiv.org&rft.au=Martin-Turrero,%20Carmen&rft.date=2024-07-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922281367%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29222813673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922281367&rft_id=info:pmid/&rfr_iscdi=true |