Loading…
MST: Adaptive Multi-Scale Tokens Guided Interactive Segmentation
Interactive segmentation has gained significant attention for its application in human-computer interaction and data annotation. To address the target scale variation issue in interactive segmentation, a novel multi-scale token adaptation algorithm is proposed. By performing top-k operations across...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interactive segmentation has gained significant attention for its application in human-computer interaction and data annotation. To address the target scale variation issue in interactive segmentation, a novel multi-scale token adaptation algorithm is proposed. By performing top-k operations across multi-scale tokens, the computational complexity is greatly simplified while ensuring performance. To enhance the robustness of multi-scale token selection, we also propose a token learning algorithm based on contrastive loss. This algorithm can effectively improve the performance of multi-scale token adaptation. Extensive benchmarking shows that the algorithm achieves state-of-the-art (SOTA) performance, compared to current methods. An interactive demo and all reproducible codes will be released at https://github.com/hahamyt/mst. |
---|---|
ISSN: | 2331-8422 |