Loading…
Compensation of the multipolar polarizability shift in optical lattice clocks
In neutral atom optical clocks, the higher-order atomic polarizability terms lead to the clock transition frequency shift which is motion-state dependent and nonlinear with the optical lattice depth. We propose to use an auxiliary optical lattice to compensate the influence of the E2-M1 differential...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In neutral atom optical clocks, the higher-order atomic polarizability terms lead to the clock transition frequency shift which is motion-state dependent and nonlinear with the optical lattice depth. We propose to use an auxiliary optical lattice to compensate the influence of the E2-M1 differential polarizability or tune the associated coefficient to a favorable value. We show that by applying this method to Sr and Hg optical lattice clocks, the low or even sub-10-19 clock transition frequency uncertainty from the optical lattice becomes feasible. Finally, the proposed scheme is simple for experimental realization and can be implemented and tested in the existing setups. |
---|---|
ISSN: | 2331-8422 |