Loading…

Bosehedral: Compiler Optimization for Bosonic Quantum Computing

Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization fram...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Zhou, Junyu, Liu, Yuhao, Shi, Yunong, Javadi-Abhari, Ali, Li, Gushu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, Junyu
Liu, Yuhao
Shi, Yunong
Javadi-Abhari, Ali
Li, Gushu
description Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922662355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922662355</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226623553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwd8ovTs1ITSlKzLFScM7PLcjMSS1S8C8oyczNrEosyczPU0jLL1IAqsrPy0xWCCxNzCspzQWrLC3JzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0sjIzMzI2OgvcSpAgAbpDkC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922662355</pqid></control><display><type>article</type><title>Bosehedral: Compiler Optimization for Bosonic Quantum Computing</title><source>ProQuest - Publicly Available Content Database</source><creator>Zhou, Junyu ; Liu, Yuhao ; Shi, Yunong ; Javadi-Abhari, Ali ; Li, Gushu</creator><creatorcontrib>Zhou, Junyu ; Liu, Yuhao ; Shi, Yunong ; Javadi-Abhari, Ali ; Li, Gushu</creatorcontrib><description>Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Compilers ; Matrix representation ; Optimization ; Performance enhancement ; Quantum computing</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2922662355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhou, Junyu</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Shi, Yunong</creatorcontrib><creatorcontrib>Javadi-Abhari, Ali</creatorcontrib><creatorcontrib>Li, Gushu</creatorcontrib><title>Bosehedral: Compiler Optimization for Bosonic Quantum Computing</title><title>arXiv.org</title><description>Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement.</description><subject>Approximation</subject><subject>Compilers</subject><subject>Matrix representation</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Quantum computing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwd8ovTs1ITSlKzLFScM7PLcjMSS1S8C8oyczNrEosyczPU0jLL1IAqsrPy0xWCCxNzCspzQWrLC3JzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0sjIzMzI2OgvcSpAgAbpDkC</recordid><startdate>20240203</startdate><enddate>20240203</enddate><creator>Zhou, Junyu</creator><creator>Liu, Yuhao</creator><creator>Shi, Yunong</creator><creator>Javadi-Abhari, Ali</creator><creator>Li, Gushu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240203</creationdate><title>Bosehedral: Compiler Optimization for Bosonic Quantum Computing</title><author>Zhou, Junyu ; Liu, Yuhao ; Shi, Yunong ; Javadi-Abhari, Ali ; Li, Gushu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226623553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Compilers</topic><topic>Matrix representation</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Quantum computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Junyu</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Shi, Yunong</creatorcontrib><creatorcontrib>Javadi-Abhari, Ali</creatorcontrib><creatorcontrib>Li, Gushu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Junyu</au><au>Liu, Yuhao</au><au>Shi, Yunong</au><au>Javadi-Abhari, Ali</au><au>Li, Gushu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bosehedral: Compiler Optimization for Bosonic Quantum Computing</atitle><jtitle>arXiv.org</jtitle><date>2024-02-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922662355
source ProQuest - Publicly Available Content Database
subjects Approximation
Compilers
Matrix representation
Optimization
Performance enhancement
Quantum computing
title Bosehedral: Compiler Optimization for Bosonic Quantum Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bosehedral:%20Compiler%20Optimization%20for%20Bosonic%20Quantum%20Computing&rft.jtitle=arXiv.org&rft.au=Zhou,%20Junyu&rft.date=2024-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922662355%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29226623553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922662355&rft_id=info:pmid/&rfr_iscdi=true