Loading…
Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network
In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS, and TESS. The results obtained were promising, outperforming the state-of-the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations, or financial brokers. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2402.02184 |