Loading…

RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways

Luminescent solar concentrators (LSCs) have the potential to serve as energy-harvesting windows in buildings. Although recent advances in nanotechnology have led to the emergence of novel fluorophores such as quantum dots, perovskites and others, the commercialization of such functional glass remain...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2024-02, Vol.18 (2), p.177-185
Main Authors: Park, Kyoungwon, Yi, Jeongmin, Yoon, Suk-Young, Park, Seong Min, Kim, Jiyong, Shin, Hyun-Beom, Biswas, Swarup, Yoo, Gang Yeol, Moon, Sang-Hwa, Kim, Jiwan, Oh, Min Suk, Wedel, Armin, Jeong, Sohee, Kim, Hyeok, Oh, Soong Ju, Kang, Ho Kwan, Yang, Heesun, Han, Chul Jong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c159y-8c5b3958456a3680ca8c472d078b3e0464ef4a757e17a2cfb9d7a501ed3204023
container_end_page 185
container_issue 2
container_start_page 177
container_title Nature photonics
container_volume 18
creator Park, Kyoungwon
Yi, Jeongmin
Yoon, Suk-Young
Park, Seong Min
Kim, Jiyong
Shin, Hyun-Beom
Biswas, Swarup
Yoo, Gang Yeol
Moon, Sang-Hwa
Kim, Jiwan
Oh, Min Suk
Wedel, Armin
Jeong, Sohee
Kim, Hyeok
Oh, Soong Ju
Kang, Ho Kwan
Yang, Heesun
Han, Chul Jong
description Luminescent solar concentrators (LSCs) have the potential to serve as energy-harvesting windows in buildings. Although recent advances in nanotechnology have led to the emergence of novel fluorophores such as quantum dots, perovskites and others, the commercialization of such functional glass remains immature due to an insufficient power conversion efficiency. In other words, improvements in fluorophores alone cannot fully maximize the potential of LSCs. Here we introduce a new laminated type of LSC structure where a patterned low-refractive-index medium acts as an optical ‘guard rail’, providing a practically non-decaying path for guiding photons. We also propose the design rules regarding the dimensions of LSCs and the spectral characteristics of fluorophores. Once these rules were applied, we achieved record-high LSC performance. The measured external quantum efficiencies at 450 nm are 45% for a 100 cm 2 area and 32% for the LSC with an edge aspect ratio of 71. The device efficiency is 7.6%, the highest value ever reported, to the best of our knowledge. These findings may have industrial implications and could accelerate the commercialization of LSCs. Luminescence solar concentrators are improved by using a laminated structure that creates a practically non-decaying optical ‘guard rail’ for light. Design rules enabled external quantum efficiencies as high as 45% for 450 nm light, yielding a device efficiency of 7.6%, probably useful for energy-harvesting windows.
doi_str_mv 10.1038/s41566-023-01366-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922682308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922682308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159y-8c5b3958456a3680ca8c472d078b3e0464ef4a757e17a2cfb9d7a501ed3204023</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcLLEOeBn4nCrQnhIlZCqcLa2jtOmSp1gp6D8PS5BcOO0u9qZ2dmJomuCbwlm8s5zIpIkxpTFmLDQjSfRjKQ8i7nM2OlvL8V5dOH9DmPBMkpnkV0V5WqRl8UDWqzKl3xZ3KPlYd9Y47WxA_JdCw7pzh4nB0PnkKnrRjfG6hEZu4WwqdBHA8gacO2I2s771niPetf1sIGh6SzqYdh-wugvo7MaWm-ufuo8enssyvw5Xr4-veSLZayJyMZYarFmmZBcJMASiTVIzVNa4VSumcE84abmkIrUkBSortdZlYLAxFSMYh5SmEc3k24w8X4wflC77uBsOKlo-DuRlGEZUHRCaRdMO1Or3jV7cKMiWB1zVVOuKiiq71zVGEhsIvkAthvj_qT_YX0B7WJ8Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922682308</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways</title><source>Nature</source><creator>Park, Kyoungwon ; Yi, Jeongmin ; Yoon, Suk-Young ; Park, Seong Min ; Kim, Jiyong ; Shin, Hyun-Beom ; Biswas, Swarup ; Yoo, Gang Yeol ; Moon, Sang-Hwa ; Kim, Jiwan ; Oh, Min Suk ; Wedel, Armin ; Jeong, Sohee ; Kim, Hyeok ; Oh, Soong Ju ; Kang, Ho Kwan ; Yang, Heesun ; Han, Chul Jong</creator><creatorcontrib>Park, Kyoungwon ; Yi, Jeongmin ; Yoon, Suk-Young ; Park, Seong Min ; Kim, Jiyong ; Shin, Hyun-Beom ; Biswas, Swarup ; Yoo, Gang Yeol ; Moon, Sang-Hwa ; Kim, Jiwan ; Oh, Min Suk ; Wedel, Armin ; Jeong, Sohee ; Kim, Hyeok ; Oh, Soong Ju ; Kang, Ho Kwan ; Yang, Heesun ; Han, Chul Jong</creatorcontrib><description>Luminescent solar concentrators (LSCs) have the potential to serve as energy-harvesting windows in buildings. Although recent advances in nanotechnology have led to the emergence of novel fluorophores such as quantum dots, perovskites and others, the commercialization of such functional glass remains immature due to an insufficient power conversion efficiency. In other words, improvements in fluorophores alone cannot fully maximize the potential of LSCs. Here we introduce a new laminated type of LSC structure where a patterned low-refractive-index medium acts as an optical ‘guard rail’, providing a practically non-decaying path for guiding photons. We also propose the design rules regarding the dimensions of LSCs and the spectral characteristics of fluorophores. Once these rules were applied, we achieved record-high LSC performance. The measured external quantum efficiencies at 450 nm are 45% for a 100 cm 2 area and 32% for the LSC with an edge aspect ratio of 71. The device efficiency is 7.6%, the highest value ever reported, to the best of our knowledge. These findings may have industrial implications and could accelerate the commercialization of LSCs. Luminescence solar concentrators are improved by using a laminated structure that creates a practically non-decaying optical ‘guard rail’ for light. Design rules enabled external quantum efficiencies as high as 45% for 450 nm light, yielding a device efficiency of 7.6%, probably useful for energy-harvesting windows.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01366-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/524 ; 639/925/357/1017 ; Applied and Technical Physics ; Nanotechnology ; Physics ; Physics and Astronomy ; Quantum Physics</subject><ispartof>Nature photonics, 2024-02, Vol.18 (2), p.177-185</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c159y-8c5b3958456a3680ca8c472d078b3e0464ef4a757e17a2cfb9d7a501ed3204023</cites><orcidid>0000-0002-2827-2070 ; 0000-0003-4981-1907 ; 0000-0003-2164-2849 ; 0000-0002-1905-379X ; 0000-0001-9019-5937 ; 0000-0002-6436-0158 ; 0009-0009-5184-9235 ; 0000-0003-1120-1433 ; 0000-0002-9863-1374 ; 0009-0003-2773-3239 ; 0000-0002-1830-6839 ; 0000-0002-1727-5786 ; 0000-0003-2787-9011 ; 0000-0002-4170-1386 ; 0000-0003-1434-8844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Kyoungwon</creatorcontrib><creatorcontrib>Yi, Jeongmin</creatorcontrib><creatorcontrib>Yoon, Suk-Young</creatorcontrib><creatorcontrib>Park, Seong Min</creatorcontrib><creatorcontrib>Kim, Jiyong</creatorcontrib><creatorcontrib>Shin, Hyun-Beom</creatorcontrib><creatorcontrib>Biswas, Swarup</creatorcontrib><creatorcontrib>Yoo, Gang Yeol</creatorcontrib><creatorcontrib>Moon, Sang-Hwa</creatorcontrib><creatorcontrib>Kim, Jiwan</creatorcontrib><creatorcontrib>Oh, Min Suk</creatorcontrib><creatorcontrib>Wedel, Armin</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Kim, Hyeok</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><creatorcontrib>Kang, Ho Kwan</creatorcontrib><creatorcontrib>Yang, Heesun</creatorcontrib><creatorcontrib>Han, Chul Jong</creatorcontrib><title>RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Luminescent solar concentrators (LSCs) have the potential to serve as energy-harvesting windows in buildings. Although recent advances in nanotechnology have led to the emergence of novel fluorophores such as quantum dots, perovskites and others, the commercialization of such functional glass remains immature due to an insufficient power conversion efficiency. In other words, improvements in fluorophores alone cannot fully maximize the potential of LSCs. Here we introduce a new laminated type of LSC structure where a patterned low-refractive-index medium acts as an optical ‘guard rail’, providing a practically non-decaying path for guiding photons. We also propose the design rules regarding the dimensions of LSCs and the spectral characteristics of fluorophores. Once these rules were applied, we achieved record-high LSC performance. The measured external quantum efficiencies at 450 nm are 45% for a 100 cm 2 area and 32% for the LSC with an edge aspect ratio of 71. The device efficiency is 7.6%, the highest value ever reported, to the best of our knowledge. These findings may have industrial implications and could accelerate the commercialization of LSCs. Luminescence solar concentrators are improved by using a laminated structure that creates a practically non-decaying optical ‘guard rail’ for light. Design rules enabled external quantum efficiencies as high as 45% for 450 nm light, yielding a device efficiency of 7.6%, probably useful for energy-harvesting windows.</description><subject>639/624/1075/524</subject><subject>639/925/357/1017</subject><subject>Applied and Technical Physics</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIlMIPcLLEOeBn4nCrQnhIlZCqcLa2jtOmSp1gp6D8PS5BcOO0u9qZ2dmJomuCbwlm8s5zIpIkxpTFmLDQjSfRjKQ8i7nM2OlvL8V5dOH9DmPBMkpnkV0V5WqRl8UDWqzKl3xZ3KPlYd9Y47WxA_JdCw7pzh4nB0PnkKnrRjfG6hEZu4WwqdBHA8gacO2I2s771niPetf1sIGh6SzqYdh-wugvo7MaWm-ufuo8enssyvw5Xr4-veSLZayJyMZYarFmmZBcJMASiTVIzVNa4VSumcE84abmkIrUkBSortdZlYLAxFSMYh5SmEc3k24w8X4wflC77uBsOKlo-DuRlGEZUHRCaRdMO1Or3jV7cKMiWB1zVVOuKiiq71zVGEhsIvkAthvj_qT_YX0B7WJ8Fw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Park, Kyoungwon</creator><creator>Yi, Jeongmin</creator><creator>Yoon, Suk-Young</creator><creator>Park, Seong Min</creator><creator>Kim, Jiyong</creator><creator>Shin, Hyun-Beom</creator><creator>Biswas, Swarup</creator><creator>Yoo, Gang Yeol</creator><creator>Moon, Sang-Hwa</creator><creator>Kim, Jiwan</creator><creator>Oh, Min Suk</creator><creator>Wedel, Armin</creator><creator>Jeong, Sohee</creator><creator>Kim, Hyeok</creator><creator>Oh, Soong Ju</creator><creator>Kang, Ho Kwan</creator><creator>Yang, Heesun</creator><creator>Han, Chul Jong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2827-2070</orcidid><orcidid>https://orcid.org/0000-0003-4981-1907</orcidid><orcidid>https://orcid.org/0000-0003-2164-2849</orcidid><orcidid>https://orcid.org/0000-0002-1905-379X</orcidid><orcidid>https://orcid.org/0000-0001-9019-5937</orcidid><orcidid>https://orcid.org/0000-0002-6436-0158</orcidid><orcidid>https://orcid.org/0009-0009-5184-9235</orcidid><orcidid>https://orcid.org/0000-0003-1120-1433</orcidid><orcidid>https://orcid.org/0000-0002-9863-1374</orcidid><orcidid>https://orcid.org/0009-0003-2773-3239</orcidid><orcidid>https://orcid.org/0000-0002-1830-6839</orcidid><orcidid>https://orcid.org/0000-0002-1727-5786</orcidid><orcidid>https://orcid.org/0000-0003-2787-9011</orcidid><orcidid>https://orcid.org/0000-0002-4170-1386</orcidid><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid></search><sort><creationdate>20240201</creationdate><title>RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways</title><author>Park, Kyoungwon ; Yi, Jeongmin ; Yoon, Suk-Young ; Park, Seong Min ; Kim, Jiyong ; Shin, Hyun-Beom ; Biswas, Swarup ; Yoo, Gang Yeol ; Moon, Sang-Hwa ; Kim, Jiwan ; Oh, Min Suk ; Wedel, Armin ; Jeong, Sohee ; Kim, Hyeok ; Oh, Soong Ju ; Kang, Ho Kwan ; Yang, Heesun ; Han, Chul Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159y-8c5b3958456a3680ca8c472d078b3e0464ef4a757e17a2cfb9d7a501ed3204023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/1075/524</topic><topic>639/925/357/1017</topic><topic>Applied and Technical Physics</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyoungwon</creatorcontrib><creatorcontrib>Yi, Jeongmin</creatorcontrib><creatorcontrib>Yoon, Suk-Young</creatorcontrib><creatorcontrib>Park, Seong Min</creatorcontrib><creatorcontrib>Kim, Jiyong</creatorcontrib><creatorcontrib>Shin, Hyun-Beom</creatorcontrib><creatorcontrib>Biswas, Swarup</creatorcontrib><creatorcontrib>Yoo, Gang Yeol</creatorcontrib><creatorcontrib>Moon, Sang-Hwa</creatorcontrib><creatorcontrib>Kim, Jiwan</creatorcontrib><creatorcontrib>Oh, Min Suk</creatorcontrib><creatorcontrib>Wedel, Armin</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><creatorcontrib>Kim, Hyeok</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><creatorcontrib>Kang, Ho Kwan</creatorcontrib><creatorcontrib>Yang, Heesun</creatorcontrib><creatorcontrib>Han, Chul Jong</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyoungwon</au><au>Yi, Jeongmin</au><au>Yoon, Suk-Young</au><au>Park, Seong Min</au><au>Kim, Jiyong</au><au>Shin, Hyun-Beom</au><au>Biswas, Swarup</au><au>Yoo, Gang Yeol</au><au>Moon, Sang-Hwa</au><au>Kim, Jiwan</au><au>Oh, Min Suk</au><au>Wedel, Armin</au><au>Jeong, Sohee</au><au>Kim, Hyeok</au><au>Oh, Soong Ju</au><au>Kang, Ho Kwan</au><au>Yang, Heesun</au><au>Han, Chul Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Luminescent solar concentrators (LSCs) have the potential to serve as energy-harvesting windows in buildings. Although recent advances in nanotechnology have led to the emergence of novel fluorophores such as quantum dots, perovskites and others, the commercialization of such functional glass remains immature due to an insufficient power conversion efficiency. In other words, improvements in fluorophores alone cannot fully maximize the potential of LSCs. Here we introduce a new laminated type of LSC structure where a patterned low-refractive-index medium acts as an optical ‘guard rail’, providing a practically non-decaying path for guiding photons. We also propose the design rules regarding the dimensions of LSCs and the spectral characteristics of fluorophores. Once these rules were applied, we achieved record-high LSC performance. The measured external quantum efficiencies at 450 nm are 45% for a 100 cm 2 area and 32% for the LSC with an edge aspect ratio of 71. The device efficiency is 7.6%, the highest value ever reported, to the best of our knowledge. These findings may have industrial implications and could accelerate the commercialization of LSCs. Luminescence solar concentrators are improved by using a laminated structure that creates a practically non-decaying optical ‘guard rail’ for light. Design rules enabled external quantum efficiencies as high as 45% for 450 nm light, yielding a device efficiency of 7.6%, probably useful for energy-harvesting windows.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01366-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2827-2070</orcidid><orcidid>https://orcid.org/0000-0003-4981-1907</orcidid><orcidid>https://orcid.org/0000-0003-2164-2849</orcidid><orcidid>https://orcid.org/0000-0002-1905-379X</orcidid><orcidid>https://orcid.org/0000-0001-9019-5937</orcidid><orcidid>https://orcid.org/0000-0002-6436-0158</orcidid><orcidid>https://orcid.org/0009-0009-5184-9235</orcidid><orcidid>https://orcid.org/0000-0003-1120-1433</orcidid><orcidid>https://orcid.org/0000-0002-9863-1374</orcidid><orcidid>https://orcid.org/0009-0003-2773-3239</orcidid><orcidid>https://orcid.org/0000-0002-1830-6839</orcidid><orcidid>https://orcid.org/0000-0002-1727-5786</orcidid><orcidid>https://orcid.org/0000-0003-2787-9011</orcidid><orcidid>https://orcid.org/0000-0002-4170-1386</orcidid><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2024-02, Vol.18 (2), p.177-185
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2922682308
source Nature
subjects 639/624/1075/524
639/925/357/1017
Applied and Technical Physics
Nanotechnology
Physics
Physics and Astronomy
Quantum Physics
title RETRACTED ARTICLE: Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Luminescent%20solar%20concentrator%20efficiency%20enhanced%20via%20nearly%20lossless%20propagation%20pathways&rft.jtitle=Nature%20photonics&rft.au=Park,%20Kyoungwon&rft.date=2024-02-01&rft.volume=18&rft.issue=2&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01366-y&rft_dat=%3Cproquest_cross%3E2922682308%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c159y-8c5b3958456a3680ca8c472d078b3e0464ef4a757e17a2cfb9d7a501ed3204023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922682308&rft_id=info:pmid/&rfr_iscdi=true