Loading…
ChatTraffic: Text-to-Traffic Generation via Diffusion Model
Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Chengyang Zhang, Yong Shao, Qitan Li, Bo Lv, Yisheng Piao, Xinglin Yin, Baocai |
description | Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at https://github.com/ChyaZhang/ChatTraffic. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922689720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922689720</sourcerecordid><originalsourceid>FETCH-proquest_journals_29226897203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwds5ILAkpSkxLy0y2UghJrSjRLcnXhQoouKfmpRYllmTm5ymUZSYquGSmpZUWg3i--SmpOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kaWRkZmFpbmRgTJwqAL7zNrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922689720</pqid></control><display><type>article</type><title>ChatTraffic: Text-to-Traffic Generation via Diffusion Model</title><source>Publicly Available Content Database</source><creator>Zhang, Chengyang ; Zhang, Yong ; Shao, Qitan ; Li, Bo ; Lv, Yisheng ; Piao, Xinglin ; Yin, Baocai</creator><creatorcontrib>Zhang, Chengyang ; Zhang, Yong ; Shao, Qitan ; Li, Bo ; Lv, Yisheng ; Piao, Xinglin ; Yin, Baocai</creatorcontrib><description>Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at https://github.com/ChyaZhang/ChatTraffic.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Datasets ; Intelligent transportation systems ; Roads ; Traffic information ; Traffic models ; Transportation networks</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2922689720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Chengyang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Shao, Qitan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Lv, Yisheng</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>ChatTraffic: Text-to-Traffic Generation via Diffusion Model</title><title>arXiv.org</title><description>Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at https://github.com/ChyaZhang/ChatTraffic.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Intelligent transportation systems</subject><subject>Roads</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Transportation networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwds5ILAkpSkxLy0y2UghJrSjRLcnXhQoouKfmpRYllmTm5ymUZSYquGSmpZUWg3i--SmpOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kaWRkZmFpbmRgTJwqAL7zNrw</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Zhang, Chengyang</creator><creator>Zhang, Yong</creator><creator>Shao, Qitan</creator><creator>Li, Bo</creator><creator>Lv, Yisheng</creator><creator>Piao, Xinglin</creator><creator>Yin, Baocai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240205</creationdate><title>ChatTraffic: Text-to-Traffic Generation via Diffusion Model</title><author>Zhang, Chengyang ; Zhang, Yong ; Shao, Qitan ; Li, Bo ; Lv, Yisheng ; Piao, Xinglin ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29226897203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Intelligent transportation systems</topic><topic>Roads</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Transportation networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chengyang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Shao, Qitan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Lv, Yisheng</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chengyang</au><au>Zhang, Yong</au><au>Shao, Qitan</au><au>Li, Bo</au><au>Lv, Yisheng</au><au>Piao, Xinglin</au><au>Yin, Baocai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ChatTraffic: Text-to-Traffic Generation via Diffusion Model</atitle><jtitle>arXiv.org</jtitle><date>2024-02-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at https://github.com/ChyaZhang/ChatTraffic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2922689720 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Datasets Intelligent transportation systems Roads Traffic information Traffic models Transportation networks |
title | ChatTraffic: Text-to-Traffic Generation via Diffusion Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ChatTraffic:%20Text-to-Traffic%20Generation%20via%20Diffusion%20Model&rft.jtitle=arXiv.org&rft.au=Zhang,%20Chengyang&rft.date=2024-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922689720%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29226897203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922689720&rft_id=info:pmid/&rfr_iscdi=true |