Loading…

Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device

The toroidal field (TF) magnet constitutes a pivotal component within a Tokamak fusion reactor, serving the essential function of generating high magnetic fields requisite for plasma confinement. However, the high magnetic fields introduce additional challenges to the structural safety of TF magnets...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-5
Main Authors: Liu, Fei, Zheng, Jinxing, Ni, Xiaojun, Han, Songbo, Liu, Xufeng, Fang, Chao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Liu, Fei
Zheng, Jinxing
Ni, Xiaojun
Han, Songbo
Liu, Xufeng
Fang, Chao
description The toroidal field (TF) magnet constitutes a pivotal component within a Tokamak fusion reactor, serving the essential function of generating high magnetic fields requisite for plasma confinement. However, the high magnetic fields introduce additional challenges to the structural safety of TF magnets. This paper aims to investigate the performance of TF magnet when utilizing N50 material. Employing a fusion device's TF magnet as a case study, a comparative analysis involving N50, JJ1, and 316LN materials was conducted. Initiating with an overview of research and development endeavors pertaining to N50, this investigation proceeds to construct and delineate a 2D finite element model of the inner leg cross-section of the TF magnet. Subsequent to this, electromagnetic analysis and thermal, electromagnetic, mechanical coupling analyses are executed. The findings indicate a notable enhancement in performance with the adoption of N50 material, evidenced by an increase in the central magnetic field from 6.2 T (using 316lN) to 7.3 T with N50. This translates to a commendable 1% augmentation in fusion energy. Finally, the research and development efforts on N50 are outlined. The yield stress of N50 base metal used in jacket and TF coil case is 1515 MPa and 1250 MPa. Consequently, the utilization of N50 material exhibits the potential to substantially ameliorate the overall performance of the tokamak machine.
doi_str_mv 10.1109/TASC.2024.3356473
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2923118590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10411062</ieee_id><sourcerecordid>2923118590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5bf15dd5267ee1691ef9890e671d0e98220a3c4e9fc8c55f909080ce56a3e3f03</originalsourceid><addsrcrecordid>eNpNUMtKw0AUDaJgrX6A4GLAdeo8MmlmWap9QK1CKi5DnNxJp5iZOpkUu_HbnVAXrs69cB6cE0W3BI8IweJhM8mnI4ppMmKMp8mYnUUDwnkWU074ebgxJ3FGKbuMrtp2hzFJsoQPop_cd9URWYNewSnrmtJIQMtm7-wBGjAeWYU2M5R3e3DSmqqTXpsaPZe1AY_etd-iha63ce4dmDp8a-2dNVoijlEwRGv49mgOBlzpdciZdW0Pj3DQEq6jC1V-tnDzh8Pobfa0mS7i1ct8OZ2sYkmT1Mf8QxFeVZymYwCSCgJKZAJDOiYVBhF64ZLJBISSmeRcCSxwhiXwtGTAFGbD6P7kG3p9ddD6Ymc7Z0JkQQVlhGRc9CxyYkln29aBKvZON6U7FgQX_cxFP3PRz1z8zRw0dyeNBoB__CTwU8p-AdMAebA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923118590</pqid></control><display><type>article</type><title>Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device</title><source>IEEE Xplore (Online service)</source><creator>Liu, Fei ; Zheng, Jinxing ; Ni, Xiaojun ; Han, Songbo ; Liu, Xufeng ; Fang, Chao</creator><creatorcontrib>Liu, Fei ; Zheng, Jinxing ; Ni, Xiaojun ; Han, Songbo ; Liu, Xufeng ; Fang, Chao</creatorcontrib><description>The toroidal field (TF) magnet constitutes a pivotal component within a Tokamak fusion reactor, serving the essential function of generating high magnetic fields requisite for plasma confinement. However, the high magnetic fields introduce additional challenges to the structural safety of TF magnets. This paper aims to investigate the performance of TF magnet when utilizing N50 material. Employing a fusion device's TF magnet as a case study, a comparative analysis involving N50, JJ1, and 316LN materials was conducted. Initiating with an overview of research and development endeavors pertaining to N50, this investigation proceeds to construct and delineate a 2D finite element model of the inner leg cross-section of the TF magnet. Subsequent to this, electromagnetic analysis and thermal, electromagnetic, mechanical coupling analyses are executed. The findings indicate a notable enhancement in performance with the adoption of N50 material, evidenced by an increase in the central magnetic field from 6.2 T (using 316lN) to 7.3 T with N50. This translates to a commendable 1% augmentation in fusion energy. Finally, the research and development efforts on N50 are outlined. The yield stress of N50 base metal used in jacket and TF coil case is 1515 MPa and 1250 MPa. Consequently, the utilization of N50 material exhibits the potential to substantially ameliorate the overall performance of the tokamak machine.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3356473</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base metal ; Finite element method ; Fusion reactors ; Magnetic confinement ; Magnetic fields ; Magnetic levitation ; Magnetomechanical effects ; Magnets ; Mechanical analysis ; N50 ; Nuclear safety ; Plasma control ; R&amp;D ; Research &amp; development ; Stress ; Structural safety ; Superconducting magnets ; TF magnet ; tokamak ; Tokamak devices ; Toroidal magnetic fields ; Welding ; Yield stress</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3367-0636 ; 0000-0003-4624-0571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10411062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zheng, Jinxing</creatorcontrib><creatorcontrib>Ni, Xiaojun</creatorcontrib><creatorcontrib>Han, Songbo</creatorcontrib><creatorcontrib>Liu, Xufeng</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><title>Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The toroidal field (TF) magnet constitutes a pivotal component within a Tokamak fusion reactor, serving the essential function of generating high magnetic fields requisite for plasma confinement. However, the high magnetic fields introduce additional challenges to the structural safety of TF magnets. This paper aims to investigate the performance of TF magnet when utilizing N50 material. Employing a fusion device's TF magnet as a case study, a comparative analysis involving N50, JJ1, and 316LN materials was conducted. Initiating with an overview of research and development endeavors pertaining to N50, this investigation proceeds to construct and delineate a 2D finite element model of the inner leg cross-section of the TF magnet. Subsequent to this, electromagnetic analysis and thermal, electromagnetic, mechanical coupling analyses are executed. The findings indicate a notable enhancement in performance with the adoption of N50 material, evidenced by an increase in the central magnetic field from 6.2 T (using 316lN) to 7.3 T with N50. This translates to a commendable 1% augmentation in fusion energy. Finally, the research and development efforts on N50 are outlined. The yield stress of N50 base metal used in jacket and TF coil case is 1515 MPa and 1250 MPa. Consequently, the utilization of N50 material exhibits the potential to substantially ameliorate the overall performance of the tokamak machine.</description><subject>Base metal</subject><subject>Finite element method</subject><subject>Fusion reactors</subject><subject>Magnetic confinement</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Magnetomechanical effects</subject><subject>Magnets</subject><subject>Mechanical analysis</subject><subject>N50</subject><subject>Nuclear safety</subject><subject>Plasma control</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Stress</subject><subject>Structural safety</subject><subject>Superconducting magnets</subject><subject>TF magnet</subject><subject>tokamak</subject><subject>Tokamak devices</subject><subject>Toroidal magnetic fields</subject><subject>Welding</subject><subject>Yield stress</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMtKw0AUDaJgrX6A4GLAdeo8MmlmWap9QK1CKi5DnNxJp5iZOpkUu_HbnVAXrs69cB6cE0W3BI8IweJhM8mnI4ppMmKMp8mYnUUDwnkWU074ebgxJ3FGKbuMrtp2hzFJsoQPop_cd9URWYNewSnrmtJIQMtm7-wBGjAeWYU2M5R3e3DSmqqTXpsaPZe1AY_etd-iha63ce4dmDp8a-2dNVoijlEwRGv49mgOBlzpdciZdW0Pj3DQEq6jC1V-tnDzh8Pobfa0mS7i1ct8OZ2sYkmT1Mf8QxFeVZymYwCSCgJKZAJDOiYVBhF64ZLJBISSmeRcCSxwhiXwtGTAFGbD6P7kG3p9ddD6Ymc7Z0JkQQVlhGRc9CxyYkln29aBKvZON6U7FgQX_cxFP3PRz1z8zRw0dyeNBoB__CTwU8p-AdMAebA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Liu, Fei</creator><creator>Zheng, Jinxing</creator><creator>Ni, Xiaojun</creator><creator>Han, Songbo</creator><creator>Liu, Xufeng</creator><creator>Fang, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3367-0636</orcidid><orcidid>https://orcid.org/0000-0003-4624-0571</orcidid></search><sort><creationdate>20240501</creationdate><title>Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device</title><author>Liu, Fei ; Zheng, Jinxing ; Ni, Xiaojun ; Han, Songbo ; Liu, Xufeng ; Fang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5bf15dd5267ee1691ef9890e671d0e98220a3c4e9fc8c55f909080ce56a3e3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Base metal</topic><topic>Finite element method</topic><topic>Fusion reactors</topic><topic>Magnetic confinement</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Magnetomechanical effects</topic><topic>Magnets</topic><topic>Mechanical analysis</topic><topic>N50</topic><topic>Nuclear safety</topic><topic>Plasma control</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Stress</topic><topic>Structural safety</topic><topic>Superconducting magnets</topic><topic>TF magnet</topic><topic>tokamak</topic><topic>Tokamak devices</topic><topic>Toroidal magnetic fields</topic><topic>Welding</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Zheng, Jinxing</creatorcontrib><creatorcontrib>Ni, Xiaojun</creatorcontrib><creatorcontrib>Han, Songbo</creatorcontrib><creatorcontrib>Liu, Xufeng</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fei</au><au>Zheng, Jinxing</au><au>Ni, Xiaojun</au><au>Han, Songbo</au><au>Liu, Xufeng</au><au>Fang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The toroidal field (TF) magnet constitutes a pivotal component within a Tokamak fusion reactor, serving the essential function of generating high magnetic fields requisite for plasma confinement. However, the high magnetic fields introduce additional challenges to the structural safety of TF magnets. This paper aims to investigate the performance of TF magnet when utilizing N50 material. Employing a fusion device's TF magnet as a case study, a comparative analysis involving N50, JJ1, and 316LN materials was conducted. Initiating with an overview of research and development endeavors pertaining to N50, this investigation proceeds to construct and delineate a 2D finite element model of the inner leg cross-section of the TF magnet. Subsequent to this, electromagnetic analysis and thermal, electromagnetic, mechanical coupling analyses are executed. The findings indicate a notable enhancement in performance with the adoption of N50 material, evidenced by an increase in the central magnetic field from 6.2 T (using 316lN) to 7.3 T with N50. This translates to a commendable 1% augmentation in fusion energy. Finally, the research and development efforts on N50 are outlined. The yield stress of N50 base metal used in jacket and TF coil case is 1515 MPa and 1250 MPa. Consequently, the utilization of N50 material exhibits the potential to substantially ameliorate the overall performance of the tokamak machine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3356473</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3367-0636</orcidid><orcidid>https://orcid.org/0000-0003-4624-0571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2923118590
source IEEE Xplore (Online service)
subjects Base metal
Finite element method
Fusion reactors
Magnetic confinement
Magnetic fields
Magnetic levitation
Magnetomechanical effects
Magnets
Mechanical analysis
N50
Nuclear safety
Plasma control
R&D
Research & development
Stress
Structural safety
Superconducting magnets
TF magnet
tokamak
Tokamak devices
Toroidal magnetic fields
Welding
Yield stress
title Study on Performance Improvement of TF Superconducting Magnet With High-Strength Nitronic 50 for Next Generation Fusion Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Performance%20Improvement%20of%20TF%20Superconducting%20Magnet%20With%20High-Strength%20Nitronic%2050%20for%20Next%20Generation%20Fusion%20Device&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Liu,%20Fei&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3356473&rft_dat=%3Cproquest_ieee_%3E2923118590%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-5bf15dd5267ee1691ef9890e671d0e98220a3c4e9fc8c55f909080ce56a3e3f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923118590&rft_id=info:pmid/&rft_ieee_id=10411062&rfr_iscdi=true