Loading…
TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images
Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner,...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-20 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423 |
container_end_page | 20 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Cao, Jingyi You, Yanan Li, Chao Liu, Jun |
description | Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods. |
doi_str_mv | 10.1109/TGRS.2024.3352899 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2923136268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388336</ieee_id><sourcerecordid>2923136268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2TTxFuptZYWhHbvIc3O1i3ubk1SpG_vLu3BwzAwfP8_8BHyCHQEQPVLPl9vRowyMeI8Y0rrKzKALFMplUJckwEFLdPuzm7JXQh7SkFkMB6Qeb5ZviaTJPfHEH9bH79OyQZr28TKJUs8HdqqickbRnSx9UnZzRrrNmJHNaFqdsmitjsM9-SmtN8BHy57SPL3WT79SFef88V0skodEzKmKFFZWoDmwKUs5FZyKEtg1komOQWpMyXdlhVlqVRhQTgnhNZ6jGOkgvEheT7XHnz7c8QQzb49-qb7aJhmfSmTqqPgTDnfhuCxNAdf1dafDFDT6zK9LtPrMhddXebpnKkQ8R_PleJc8j8QPGUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923136268</pqid></control><display><type>article</type><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</creator><creatorcontrib>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</creatorcontrib><description>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3352899</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Cognition ; Detection ; Detectors ; Feature descriptor ; Feature extraction ; feature interpretability ; Image color analysis ; image registration ; keypoint detection ; Learning ; Localization ; Matching ; Performance evaluation ; Remote sensing ; Reproducibility ; Semantics ; Sensors ; Task analysis ; Trustworthiness</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</cites><orcidid>0000-0002-5754-9016 ; 0000-0003-1492-5410 ; 0000-0003-4007-6109 ; 0000-0001-6473-9187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Cao, Jingyi</creatorcontrib><creatorcontrib>You, Yanan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</description><subject>Accuracy</subject><subject>Cognition</subject><subject>Detection</subject><subject>Detectors</subject><subject>Feature descriptor</subject><subject>Feature extraction</subject><subject>feature interpretability</subject><subject>Image color analysis</subject><subject>image registration</subject><subject>keypoint detection</subject><subject>Learning</subject><subject>Localization</subject><subject>Matching</subject><subject>Performance evaluation</subject><subject>Remote sensing</subject><subject>Reproducibility</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Trustworthiness</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2TTxFuptZYWhHbvIc3O1i3ubk1SpG_vLu3BwzAwfP8_8BHyCHQEQPVLPl9vRowyMeI8Y0rrKzKALFMplUJckwEFLdPuzm7JXQh7SkFkMB6Qeb5ZviaTJPfHEH9bH79OyQZr28TKJUs8HdqqickbRnSx9UnZzRrrNmJHNaFqdsmitjsM9-SmtN8BHy57SPL3WT79SFef88V0skodEzKmKFFZWoDmwKUs5FZyKEtg1komOQWpMyXdlhVlqVRhQTgnhNZ6jGOkgvEheT7XHnz7c8QQzb49-qb7aJhmfSmTqqPgTDnfhuCxNAdf1dafDFDT6zK9LtPrMhddXebpnKkQ8R_PleJc8j8QPGUw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cao, Jingyi</creator><creator>You, Yanan</creator><creator>Li, Chao</creator><creator>Liu, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5754-9016</orcidid><orcidid>https://orcid.org/0000-0003-1492-5410</orcidid><orcidid>https://orcid.org/0000-0003-4007-6109</orcidid><orcidid>https://orcid.org/0000-0001-6473-9187</orcidid></search><sort><creationdate>2024</creationdate><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><author>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Cognition</topic><topic>Detection</topic><topic>Detectors</topic><topic>Feature descriptor</topic><topic>Feature extraction</topic><topic>feature interpretability</topic><topic>Image color analysis</topic><topic>image registration</topic><topic>keypoint detection</topic><topic>Learning</topic><topic>Localization</topic><topic>Matching</topic><topic>Performance evaluation</topic><topic>Remote sensing</topic><topic>Reproducibility</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jingyi</creatorcontrib><creatorcontrib>You, Yanan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jingyi</au><au>You, Yanan</au><au>Li, Chao</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3352899</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5754-9016</orcidid><orcidid>https://orcid.org/0000-0003-1492-5410</orcidid><orcidid>https://orcid.org/0000-0003-4007-6109</orcidid><orcidid>https://orcid.org/0000-0001-6473-9187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-20 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2923136268 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Cognition Detection Detectors Feature descriptor Feature extraction feature interpretability Image color analysis image registration keypoint detection Learning Localization Matching Performance evaluation Remote sensing Reproducibility Semantics Sensors Task analysis Trustworthiness |
title | TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSK:%20A%20Trustworthy%20Semantic%20Keypoint%20Detector%20for%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cao,%20Jingyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3352899&rft_dat=%3Cproquest_ieee_%3E2923136268%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923136268&rft_id=info:pmid/&rft_ieee_id=10388336&rfr_iscdi=true |