Loading…

TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images

Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-20
Main Authors: Cao, Jingyi, You, Yanan, Li, Chao, Liu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423
container_end_page 20
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Cao, Jingyi
You, Yanan
Li, Chao
Liu, Jun
description Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.
doi_str_mv 10.1109/TGRS.2024.3352899
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2923136268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388336</ieee_id><sourcerecordid>2923136268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2TTxFuptZYWhHbvIc3O1i3ubk1SpG_vLu3BwzAwfP8_8BHyCHQEQPVLPl9vRowyMeI8Y0rrKzKALFMplUJckwEFLdPuzm7JXQh7SkFkMB6Qeb5ZviaTJPfHEH9bH79OyQZr28TKJUs8HdqqickbRnSx9UnZzRrrNmJHNaFqdsmitjsM9-SmtN8BHy57SPL3WT79SFef88V0skodEzKmKFFZWoDmwKUs5FZyKEtg1komOQWpMyXdlhVlqVRhQTgnhNZ6jGOkgvEheT7XHnz7c8QQzb49-qb7aJhmfSmTqqPgTDnfhuCxNAdf1dafDFDT6zK9LtPrMhddXebpnKkQ8R_PleJc8j8QPGUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923136268</pqid></control><display><type>article</type><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</creator><creatorcontrib>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</creatorcontrib><description>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3352899</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Cognition ; Detection ; Detectors ; Feature descriptor ; Feature extraction ; feature interpretability ; Image color analysis ; image registration ; keypoint detection ; Learning ; Localization ; Matching ; Performance evaluation ; Remote sensing ; Reproducibility ; Semantics ; Sensors ; Task analysis ; Trustworthiness</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</cites><orcidid>0000-0002-5754-9016 ; 0000-0003-1492-5410 ; 0000-0003-4007-6109 ; 0000-0001-6473-9187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Cao, Jingyi</creatorcontrib><creatorcontrib>You, Yanan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</description><subject>Accuracy</subject><subject>Cognition</subject><subject>Detection</subject><subject>Detectors</subject><subject>Feature descriptor</subject><subject>Feature extraction</subject><subject>feature interpretability</subject><subject>Image color analysis</subject><subject>image registration</subject><subject>keypoint detection</subject><subject>Learning</subject><subject>Localization</subject><subject>Matching</subject><subject>Performance evaluation</subject><subject>Remote sensing</subject><subject>Reproducibility</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Trustworthiness</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2TTxFuptZYWhHbvIc3O1i3ubk1SpG_vLu3BwzAwfP8_8BHyCHQEQPVLPl9vRowyMeI8Y0rrKzKALFMplUJckwEFLdPuzm7JXQh7SkFkMB6Qeb5ZviaTJPfHEH9bH79OyQZr28TKJUs8HdqqickbRnSx9UnZzRrrNmJHNaFqdsmitjsM9-SmtN8BHy57SPL3WT79SFef88V0skodEzKmKFFZWoDmwKUs5FZyKEtg1komOQWpMyXdlhVlqVRhQTgnhNZ6jGOkgvEheT7XHnz7c8QQzb49-qb7aJhmfSmTqqPgTDnfhuCxNAdf1dafDFDT6zK9LtPrMhddXebpnKkQ8R_PleJc8j8QPGUw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cao, Jingyi</creator><creator>You, Yanan</creator><creator>Li, Chao</creator><creator>Liu, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5754-9016</orcidid><orcidid>https://orcid.org/0000-0003-1492-5410</orcidid><orcidid>https://orcid.org/0000-0003-4007-6109</orcidid><orcidid>https://orcid.org/0000-0001-6473-9187</orcidid></search><sort><creationdate>2024</creationdate><title>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</title><author>Cao, Jingyi ; You, Yanan ; Li, Chao ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Cognition</topic><topic>Detection</topic><topic>Detectors</topic><topic>Feature descriptor</topic><topic>Feature extraction</topic><topic>feature interpretability</topic><topic>Image color analysis</topic><topic>image registration</topic><topic>keypoint detection</topic><topic>Learning</topic><topic>Localization</topic><topic>Matching</topic><topic>Performance evaluation</topic><topic>Remote sensing</topic><topic>Reproducibility</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jingyi</creatorcontrib><creatorcontrib>You, Yanan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jingyi</au><au>You, Yanan</au><au>Li, Chao</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3352899</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5754-9016</orcidid><orcidid>https://orcid.org/0000-0003-1492-5410</orcidid><orcidid>https://orcid.org/0000-0003-4007-6109</orcidid><orcidid>https://orcid.org/0000-0001-6473-9187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-20
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2923136268
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Cognition
Detection
Detectors
Feature descriptor
Feature extraction
feature interpretability
Image color analysis
image registration
keypoint detection
Learning
Localization
Matching
Performance evaluation
Remote sensing
Reproducibility
Semantics
Sensors
Task analysis
Trustworthiness
title TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSK:%20A%20Trustworthy%20Semantic%20Keypoint%20Detector%20for%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cao,%20Jingyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3352899&rft_dat=%3Cproquest_ieee_%3E2923136268%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-e6e8a0d1931366d6b631ff12aa62630169586cb2dff88da14cc449997e7e0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923136268&rft_id=info:pmid/&rft_ieee_id=10388336&rfr_iscdi=true