Loading…
Nonlinear resonant response of a buckled beam coupled with a boundary massive oscillator
This study focuses on nonlinear modal resonant dynamics of a buckled beam coupled with a boundary massive oscillator. To reveal buckled beam–boundary oscillator coupling effect, extended Hamilton principle is employed to derive a dynamic model with geometric nonlinearity included, and direct multipl...
Saved in:
Published in: | Nonlinear dynamics 2024-03, Vol.112 (5), p.3217-3240 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focuses on nonlinear modal resonant dynamics of a buckled beam coupled with a boundary massive oscillator. To reveal buckled beam–boundary oscillator coupling effect, extended Hamilton principle is employed to derive a dynamic model with geometric nonlinearity included, and direct multiple-scale method (i.e., attacking directly partial differential equations) is then applied to reduce the original infinite-dimensional beam–support coupled system, leading to nonlinear modulation equations characterizing reduced slow dynamics of the coupled system, by focusing on beam’s one-to-one internally resonant dynamics around its first buckled shape. Time history responses, frequency responses, and Poincaré mapping are employed to investigate stability/bifurcation of nonlinear forced coupled dynamics, with one-to-one internal resonance activated or not. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-09239-3 |