Loading…
An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping
Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, tradi...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chavan, Rugved Hyman, Gabriel Qureshi, Zoraiz Jayakumar, Nivetha Terrell, William Berr, Stuart Schiff, David Wardius, Megan Fountain, Nathan Muttikkal, Thomas Quigg, Mark Zhang, Miaomiao Kundu, Bijoy |
description | Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET datasets. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2923177708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923177708</sourcerecordid><originalsourceid>FETCH-proquest_journals_29231777083</originalsourceid><addsrcrecordid>eNqNjUFKA0EQAIeAYND8ocHzwmYmceNRQiRHD7mHyW5HO8x2jz098QX-2w34AE91qIKaubkPYdlsVt7fu0Upl7Zt_XPn1-swdz-vDMhDY9JMgAExQ8KoTPwBmTImYgSTyShdEU5JZADiXA2-yT4hRzWKCa6S6ojQiyr2RsIFzqIQq8kYDYdbGEc0pR5OGonhfXeAMeY8nR7d3Tmmgos_Print91hu2-yylfFYseLVOVJHf2LD8uu69pN-F_1C-vGUuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923177708</pqid></control><display><type>article</type><title>An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping</title><source>Publicly Available Content (ProQuest)</source><creator>Chavan, Rugved ; Hyman, Gabriel ; Qureshi, Zoraiz ; Jayakumar, Nivetha ; Terrell, William ; Berr, Stuart ; Schiff, David ; Wardius, Megan ; Fountain, Nathan ; Muttikkal, Thomas ; Quigg, Mark ; Zhang, Miaomiao ; Kundu, Bijoy</creator><creatorcontrib>Chavan, Rugved ; Hyman, Gabriel ; Qureshi, Zoraiz ; Jayakumar, Nivetha ; Terrell, William ; Berr, Stuart ; Schiff, David ; Wardius, Megan ; Fountain, Nathan ; Muttikkal, Thomas ; Quigg, Mark ; Zhang, Miaomiao ; Kundu, Bijoy</creatorcontrib><description>Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET datasets. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Blood ; Brain ; Carotid arteries ; Deep learning ; Medical imaging ; Positron emission ; Recurrent neural networks ; Sampling ; Seizures</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2923177708?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Chavan, Rugved</creatorcontrib><creatorcontrib>Hyman, Gabriel</creatorcontrib><creatorcontrib>Qureshi, Zoraiz</creatorcontrib><creatorcontrib>Jayakumar, Nivetha</creatorcontrib><creatorcontrib>Terrell, William</creatorcontrib><creatorcontrib>Berr, Stuart</creatorcontrib><creatorcontrib>Schiff, David</creatorcontrib><creatorcontrib>Wardius, Megan</creatorcontrib><creatorcontrib>Fountain, Nathan</creatorcontrib><creatorcontrib>Muttikkal, Thomas</creatorcontrib><creatorcontrib>Quigg, Mark</creatorcontrib><creatorcontrib>Zhang, Miaomiao</creatorcontrib><creatorcontrib>Kundu, Bijoy</creatorcontrib><title>An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping</title><title>arXiv.org</title><description>Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET datasets. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging.</description><subject>Automation</subject><subject>Blood</subject><subject>Brain</subject><subject>Carotid arteries</subject><subject>Deep learning</subject><subject>Medical imaging</subject><subject>Positron emission</subject><subject>Recurrent neural networks</subject><subject>Sampling</subject><subject>Seizures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUFKA0EQAIeAYND8ocHzwmYmceNRQiRHD7mHyW5HO8x2jz098QX-2w34AE91qIKaubkPYdlsVt7fu0Upl7Zt_XPn1-swdz-vDMhDY9JMgAExQ8KoTPwBmTImYgSTyShdEU5JZADiXA2-yT4hRzWKCa6S6ojQiyr2RsIFzqIQq8kYDYdbGEc0pR5OGonhfXeAMeY8nR7d3Tmmgos_Print91hu2-yylfFYseLVOVJHf2LD8uu69pN-F_1C-vGUuY</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Chavan, Rugved</creator><creator>Hyman, Gabriel</creator><creator>Qureshi, Zoraiz</creator><creator>Jayakumar, Nivetha</creator><creator>Terrell, William</creator><creator>Berr, Stuart</creator><creator>Schiff, David</creator><creator>Wardius, Megan</creator><creator>Fountain, Nathan</creator><creator>Muttikkal, Thomas</creator><creator>Quigg, Mark</creator><creator>Zhang, Miaomiao</creator><creator>Kundu, Bijoy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240205</creationdate><title>An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping</title><author>Chavan, Rugved ; Hyman, Gabriel ; Qureshi, Zoraiz ; Jayakumar, Nivetha ; Terrell, William ; Berr, Stuart ; Schiff, David ; Wardius, Megan ; Fountain, Nathan ; Muttikkal, Thomas ; Quigg, Mark ; Zhang, Miaomiao ; Kundu, Bijoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29231777083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Blood</topic><topic>Brain</topic><topic>Carotid arteries</topic><topic>Deep learning</topic><topic>Medical imaging</topic><topic>Positron emission</topic><topic>Recurrent neural networks</topic><topic>Sampling</topic><topic>Seizures</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavan, Rugved</creatorcontrib><creatorcontrib>Hyman, Gabriel</creatorcontrib><creatorcontrib>Qureshi, Zoraiz</creatorcontrib><creatorcontrib>Jayakumar, Nivetha</creatorcontrib><creatorcontrib>Terrell, William</creatorcontrib><creatorcontrib>Berr, Stuart</creatorcontrib><creatorcontrib>Schiff, David</creatorcontrib><creatorcontrib>Wardius, Megan</creatorcontrib><creatorcontrib>Fountain, Nathan</creatorcontrib><creatorcontrib>Muttikkal, Thomas</creatorcontrib><creatorcontrib>Quigg, Mark</creatorcontrib><creatorcontrib>Zhang, Miaomiao</creatorcontrib><creatorcontrib>Kundu, Bijoy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavan, Rugved</au><au>Hyman, Gabriel</au><au>Qureshi, Zoraiz</au><au>Jayakumar, Nivetha</au><au>Terrell, William</au><au>Berr, Stuart</au><au>Schiff, David</au><au>Wardius, Megan</au><au>Fountain, Nathan</au><au>Muttikkal, Thomas</au><au>Quigg, Mark</au><au>Zhang, Miaomiao</au><au>Kundu, Bijoy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping</atitle><jtitle>arXiv.org</jtitle><date>2024-02-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET datasets. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2923177708 |
source | Publicly Available Content (ProQuest) |
subjects | Automation Blood Brain Carotid arteries Deep learning Medical imaging Positron emission Recurrent neural networks Sampling Seizures |
title | An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20end-to-end%20deep%20learning%20pipeline%20to%20derive%20blood%20input%20with%20partial%20volume%20corrections%20for%20automated%20parametric%20brain%20PET%20mapping&rft.jtitle=arXiv.org&rft.au=Chavan,%20Rugved&rft.date=2024-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2923177708%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29231777083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923177708&rft_id=info:pmid/&rfr_iscdi=true |