Loading…

Classification of water subscribers by machine learning algorithms

The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Prov...

Full description

Saved in:
Bibliographic Details
Published in:Water and environment journal : WEJ 2024-02, Vol.38 (1), p.45-58
Main Authors: Dahesh, Arezoo, Tavakkoli‐Moghaddam, Reza, Tajally, AmirReza, Erfani‐Jazi, Aseman, Babazadeh‐Behestani, Milad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523
container_end_page 58
container_issue 1
container_start_page 45
container_title Water and environment journal : WEJ
container_volume 38
creator Dahesh, Arezoo
Tavakkoli‐Moghaddam, Reza
Tajally, AmirReza
Erfani‐Jazi, Aseman
Babazadeh‐Behestani, Milad
description The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.
doi_str_mv 10.1111/wej.12892
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923240499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923240499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Uec5EaoypcqsYAYLds9t67SpNipqv57AkFs3HI3PPe-0kPINWcT3s_0gJsJFxWIEzLiZV5mhQJ5-ndX6pxcpLRhLC-hKEbkflablIIPznShbWjr6cF0GGna2-RisBgTtUe6NW4dGqQ1mtiEZkVNvWpj6NbbdEnOvKkTXv3uMXl_mL_NnrLF6-Pz7G6ROcm5yDgHZbxk0lYOKrRSKVt6p3LIFSB4cM4jt65cKmYEgC88R6sKWS29KpWQY3Iz5O5i-7nH1OlNu49NX6kFCClylgP01O1AudimFNHrXQxbE4-aM_2tSPeK9I-inp0O7CHUePwf1B_zl-HjC1mVaEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923240499</pqid></control><display><type>article</type><title>Classification of water subscribers by machine learning algorithms</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</creator><creatorcontrib>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</creatorcontrib><description>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/wej.12892</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bagging classifier ; Classification ; Consumption patterns ; Domestic water ; ensemble algorithms ; Learning algorithms ; Machine learning ; Neural networks ; Population growth ; Rainfall ; supervised learning ; Support vector machines ; Urban populations ; urban water systems ; Wastewater ; Water consumption ; Water crises ; Water management ; Water resources ; Water scarcity</subject><ispartof>Water and environment journal : WEJ, 2024-02, Vol.38 (1), p.45-58</ispartof><rights>2023 CIWEM.</rights><rights>2024 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</cites><orcidid>0000-0002-6757-926X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dahesh, Arezoo</creatorcontrib><creatorcontrib>Tavakkoli‐Moghaddam, Reza</creatorcontrib><creatorcontrib>Tajally, AmirReza</creatorcontrib><creatorcontrib>Erfani‐Jazi, Aseman</creatorcontrib><creatorcontrib>Babazadeh‐Behestani, Milad</creatorcontrib><title>Classification of water subscribers by machine learning algorithms</title><title>Water and environment journal : WEJ</title><description>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</description><subject>Algorithms</subject><subject>bagging classifier</subject><subject>Classification</subject><subject>Consumption patterns</subject><subject>Domestic water</subject><subject>ensemble algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Population growth</subject><subject>Rainfall</subject><subject>supervised learning</subject><subject>Support vector machines</subject><subject>Urban populations</subject><subject>urban water systems</subject><subject>Wastewater</subject><subject>Water consumption</subject><subject>Water crises</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water scarcity</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Uec5EaoypcqsYAYLds9t67SpNipqv57AkFs3HI3PPe-0kPINWcT3s_0gJsJFxWIEzLiZV5mhQJ5-ndX6pxcpLRhLC-hKEbkflablIIPznShbWjr6cF0GGna2-RisBgTtUe6NW4dGqQ1mtiEZkVNvWpj6NbbdEnOvKkTXv3uMXl_mL_NnrLF6-Pz7G6ROcm5yDgHZbxk0lYOKrRSKVt6p3LIFSB4cM4jt65cKmYEgC88R6sKWS29KpWQY3Iz5O5i-7nH1OlNu49NX6kFCClylgP01O1AudimFNHrXQxbE4-aM_2tSPeK9I-inp0O7CHUePwf1B_zl-HjC1mVaEU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Dahesh, Arezoo</creator><creator>Tavakkoli‐Moghaddam, Reza</creator><creator>Tajally, AmirReza</creator><creator>Erfani‐Jazi, Aseman</creator><creator>Babazadeh‐Behestani, Milad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6757-926X</orcidid></search><sort><creationdate>202402</creationdate><title>Classification of water subscribers by machine learning algorithms</title><author>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>bagging classifier</topic><topic>Classification</topic><topic>Consumption patterns</topic><topic>Domestic water</topic><topic>ensemble algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Population growth</topic><topic>Rainfall</topic><topic>supervised learning</topic><topic>Support vector machines</topic><topic>Urban populations</topic><topic>urban water systems</topic><topic>Wastewater</topic><topic>Water consumption</topic><topic>Water crises</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water scarcity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahesh, Arezoo</creatorcontrib><creatorcontrib>Tavakkoli‐Moghaddam, Reza</creatorcontrib><creatorcontrib>Tajally, AmirReza</creatorcontrib><creatorcontrib>Erfani‐Jazi, Aseman</creatorcontrib><creatorcontrib>Babazadeh‐Behestani, Milad</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahesh, Arezoo</au><au>Tavakkoli‐Moghaddam, Reza</au><au>Tajally, AmirReza</au><au>Erfani‐Jazi, Aseman</au><au>Babazadeh‐Behestani, Milad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of water subscribers by machine learning algorithms</atitle><jtitle>Water and environment journal : WEJ</jtitle><date>2024-02</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wej.12892</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6757-926X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1747-6585
ispartof Water and environment journal : WEJ, 2024-02, Vol.38 (1), p.45-58
issn 1747-6585
1747-6593
language eng
recordid cdi_proquest_journals_2923240499
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
bagging classifier
Classification
Consumption patterns
Domestic water
ensemble algorithms
Learning algorithms
Machine learning
Neural networks
Population growth
Rainfall
supervised learning
Support vector machines
Urban populations
urban water systems
Wastewater
Water consumption
Water crises
Water management
Water resources
Water scarcity
title Classification of water subscribers by machine learning algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20water%20subscribers%20by%20machine%20learning%20algorithms&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Dahesh,%20Arezoo&rft.date=2024-02&rft.volume=38&rft.issue=1&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/wej.12892&rft_dat=%3Cproquest_cross%3E2923240499%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923240499&rft_id=info:pmid/&rfr_iscdi=true