Loading…
Classification of water subscribers by machine learning algorithms
The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Prov...
Saved in:
Published in: | Water and environment journal : WEJ 2024-02, Vol.38 (1), p.45-58 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523 |
container_end_page | 58 |
container_issue | 1 |
container_start_page | 45 |
container_title | Water and environment journal : WEJ |
container_volume | 38 |
creator | Dahesh, Arezoo Tavakkoli‐Moghaddam, Reza Tajally, AmirReza Erfani‐Jazi, Aseman Babazadeh‐Behestani, Milad |
description | The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively. |
doi_str_mv | 10.1111/wej.12892 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923240499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923240499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Uec5EaoypcqsYAYLds9t67SpNipqv57AkFs3HI3PPe-0kPINWcT3s_0gJsJFxWIEzLiZV5mhQJ5-ndX6pxcpLRhLC-hKEbkflablIIPznShbWjr6cF0GGna2-RisBgTtUe6NW4dGqQ1mtiEZkVNvWpj6NbbdEnOvKkTXv3uMXl_mL_NnrLF6-Pz7G6ROcm5yDgHZbxk0lYOKrRSKVt6p3LIFSB4cM4jt65cKmYEgC88R6sKWS29KpWQY3Iz5O5i-7nH1OlNu49NX6kFCClylgP01O1AudimFNHrXQxbE4-aM_2tSPeK9I-inp0O7CHUePwf1B_zl-HjC1mVaEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923240499</pqid></control><display><type>article</type><title>Classification of water subscribers by machine learning algorithms</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</creator><creatorcontrib>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</creatorcontrib><description>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/wej.12892</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bagging classifier ; Classification ; Consumption patterns ; Domestic water ; ensemble algorithms ; Learning algorithms ; Machine learning ; Neural networks ; Population growth ; Rainfall ; supervised learning ; Support vector machines ; Urban populations ; urban water systems ; Wastewater ; Water consumption ; Water crises ; Water management ; Water resources ; Water scarcity</subject><ispartof>Water and environment journal : WEJ, 2024-02, Vol.38 (1), p.45-58</ispartof><rights>2023 CIWEM.</rights><rights>2024 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</cites><orcidid>0000-0002-6757-926X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dahesh, Arezoo</creatorcontrib><creatorcontrib>Tavakkoli‐Moghaddam, Reza</creatorcontrib><creatorcontrib>Tajally, AmirReza</creatorcontrib><creatorcontrib>Erfani‐Jazi, Aseman</creatorcontrib><creatorcontrib>Babazadeh‐Behestani, Milad</creatorcontrib><title>Classification of water subscribers by machine learning algorithms</title><title>Water and environment journal : WEJ</title><description>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</description><subject>Algorithms</subject><subject>bagging classifier</subject><subject>Classification</subject><subject>Consumption patterns</subject><subject>Domestic water</subject><subject>ensemble algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Population growth</subject><subject>Rainfall</subject><subject>supervised learning</subject><subject>Support vector machines</subject><subject>Urban populations</subject><subject>urban water systems</subject><subject>Wastewater</subject><subject>Water consumption</subject><subject>Water crises</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water scarcity</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Uec5EaoypcqsYAYLds9t67SpNipqv57AkFs3HI3PPe-0kPINWcT3s_0gJsJFxWIEzLiZV5mhQJ5-ndX6pxcpLRhLC-hKEbkflablIIPznShbWjr6cF0GGna2-RisBgTtUe6NW4dGqQ1mtiEZkVNvWpj6NbbdEnOvKkTXv3uMXl_mL_NnrLF6-Pz7G6ROcm5yDgHZbxk0lYOKrRSKVt6p3LIFSB4cM4jt65cKmYEgC88R6sKWS29KpWQY3Iz5O5i-7nH1OlNu49NX6kFCClylgP01O1AudimFNHrXQxbE4-aM_2tSPeK9I-inp0O7CHUePwf1B_zl-HjC1mVaEU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Dahesh, Arezoo</creator><creator>Tavakkoli‐Moghaddam, Reza</creator><creator>Tajally, AmirReza</creator><creator>Erfani‐Jazi, Aseman</creator><creator>Babazadeh‐Behestani, Milad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6757-926X</orcidid></search><sort><creationdate>202402</creationdate><title>Classification of water subscribers by machine learning algorithms</title><author>Dahesh, Arezoo ; Tavakkoli‐Moghaddam, Reza ; Tajally, AmirReza ; Erfani‐Jazi, Aseman ; Babazadeh‐Behestani, Milad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>bagging classifier</topic><topic>Classification</topic><topic>Consumption patterns</topic><topic>Domestic water</topic><topic>ensemble algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Population growth</topic><topic>Rainfall</topic><topic>supervised learning</topic><topic>Support vector machines</topic><topic>Urban populations</topic><topic>urban water systems</topic><topic>Wastewater</topic><topic>Water consumption</topic><topic>Water crises</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water scarcity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahesh, Arezoo</creatorcontrib><creatorcontrib>Tavakkoli‐Moghaddam, Reza</creatorcontrib><creatorcontrib>Tajally, AmirReza</creatorcontrib><creatorcontrib>Erfani‐Jazi, Aseman</creatorcontrib><creatorcontrib>Babazadeh‐Behestani, Milad</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahesh, Arezoo</au><au>Tavakkoli‐Moghaddam, Reza</au><au>Tajally, AmirReza</au><au>Erfani‐Jazi, Aseman</au><au>Babazadeh‐Behestani, Milad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of water subscribers by machine learning algorithms</atitle><jtitle>Water and environment journal : WEJ</jtitle><date>2024-02</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>The problem of water scarcity and water crisis (e.g., stable water resources, reduced rainfall, increased urban population growth and lack of proper management of water consumption in urban and domestic water) has recently become a significant issue. Therefore, examining the behaviour of Tehran Province Water and Wastewater (TPWW) subscribers to identify high‐consumption subscribers and explain methods to encourage and educate them more about the correct water consumption pattern can help deal with this crisis. This study aims to use machine learning algorithms to build a robust model for the classification of subscribers in Tehran. Then, new subscribers can be classified into similar classes. For this reason, ensemble algorithms, support vector machines and neural networks are used to predict subscribers' behaviour. Then, the random forest algorithm from the set of ensemble algorithms is considered the best model for the TPWW case with 99% and 98% in train and test accuracy, respectively.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wej.12892</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6757-926X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6585 |
ispartof | Water and environment journal : WEJ, 2024-02, Vol.38 (1), p.45-58 |
issn | 1747-6585 1747-6593 |
language | eng |
recordid | cdi_proquest_journals_2923240499 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms bagging classifier Classification Consumption patterns Domestic water ensemble algorithms Learning algorithms Machine learning Neural networks Population growth Rainfall supervised learning Support vector machines Urban populations urban water systems Wastewater Water consumption Water crises Water management Water resources Water scarcity |
title | Classification of water subscribers by machine learning algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20water%20subscribers%20by%20machine%20learning%20algorithms&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Dahesh,%20Arezoo&rft.date=2024-02&rft.volume=38&rft.issue=1&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/wej.12892&rft_dat=%3Cproquest_cross%3E2923240499%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3112-1195af303b8c98eb355b7fc549459e9f9ccfe1bc7d50a299f6f1eb5638df57523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923240499&rft_id=info:pmid/&rfr_iscdi=true |