Loading…
Partial identification and inference for conditional distributions of treatment effects
Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of tr...
Saved in:
Published in: | Journal of applied econometrics (Chichester, England) England), 2024-01, Vol.39 (1), p.107-127 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53 |
container_end_page | 127 |
container_issue | 1 |
container_start_page | 107 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 39 |
creator | Lee, Sungwon |
description | Summary
This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods. |
doi_str_mv | 10.1002/jae.3014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923517653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923517653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrysTj52s3sspX5R0IPiMaTJBFLaTU1SpP_eXevV0zDMM8PwEnLN4I4B8Pu1wTsBTJ6QCYOuqxiv61MygbYVleI1PycXOa8BoAFQE_L5ZlIJZkODw74EH6wpIfbU9I6G3mPC3iL1MVEbexfG2YBdyCWF1X5sM42eloSmbIcLFL1HW_IlOfNmk_Hqr07Jx8Piff5ULV8fn-ezZWWFlLJCD8yhV8iQr2rRdE45rzoH0imLvGvMSnrGTWusR5AgpRfCo2wRbKeGjSm5Od7dpfi1x1z0Ou7T8GPWvOOiZqqpxaBuj8qmmHNCr3cpbE06aAZ6jE0PsekxtoFWR_odNnj41-mX2eLX_wDIW2-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923517653</pqid></control><display><type>article</type><title>Partial identification and inference for conditional distributions of treatment effects</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lee, Sungwon</creator><creatorcontrib>Lee, Sungwon</creatorcontrib><description>Summary
This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.3014</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>conditional distribution ; Dominance ; Econometrics ; Endogenous ; heterogeneity ; Inference ; partial identification ; treatment effects ; uniform inference ; Usefulness</subject><ispartof>Journal of applied econometrics (Chichester, England), 2024-01, Vol.39 (1), p.107-127</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Lee, Sungwon</creatorcontrib><title>Partial identification and inference for conditional distributions of treatment effects</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary
This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</description><subject>conditional distribution</subject><subject>Dominance</subject><subject>Econometrics</subject><subject>Endogenous</subject><subject>heterogeneity</subject><subject>Inference</subject><subject>partial identification</subject><subject>treatment effects</subject><subject>uniform inference</subject><subject>Usefulness</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrysTj52s3sspX5R0IPiMaTJBFLaTU1SpP_eXevV0zDMM8PwEnLN4I4B8Pu1wTsBTJ6QCYOuqxiv61MygbYVleI1PycXOa8BoAFQE_L5ZlIJZkODw74EH6wpIfbU9I6G3mPC3iL1MVEbexfG2YBdyCWF1X5sM42eloSmbIcLFL1HW_IlOfNmk_Hqr07Jx8Piff5ULV8fn-ezZWWFlLJCD8yhV8iQr2rRdE45rzoH0imLvGvMSnrGTWusR5AgpRfCo2wRbKeGjSm5Od7dpfi1x1z0Ou7T8GPWvOOiZqqpxaBuj8qmmHNCr3cpbE06aAZ6jE0PsekxtoFWR_odNnj41-mX2eLX_wDIW2-0</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lee, Sungwon</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>202401</creationdate><title>Partial identification and inference for conditional distributions of treatment effects</title><author>Lee, Sungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>conditional distribution</topic><topic>Dominance</topic><topic>Econometrics</topic><topic>Endogenous</topic><topic>heterogeneity</topic><topic>Inference</topic><topic>partial identification</topic><topic>treatment effects</topic><topic>uniform inference</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungwon</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial identification and inference for conditional distributions of treatment effects</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>107</spage><epage>127</epage><pages>107-127</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary
This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.3014</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2024-01, Vol.39 (1), p.107-127 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_journals_2923517653 |
source | International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection |
subjects | conditional distribution Dominance Econometrics Endogenous heterogeneity Inference partial identification treatment effects uniform inference Usefulness |
title | Partial identification and inference for conditional distributions of treatment effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20identification%20and%20inference%20for%20conditional%20distributions%20of%20treatment%20effects&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Lee,%20Sungwon&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=107&rft.epage=127&rft.pages=107-127&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.3014&rft_dat=%3Cproquest_cross%3E2923517653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923517653&rft_id=info:pmid/&rfr_iscdi=true |