Loading…

Partial identification and inference for conditional distributions of treatment effects

Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of tr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied econometrics (Chichester, England) England), 2024-01, Vol.39 (1), p.107-127
Main Author: Lee, Sungwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53
container_end_page 127
container_issue 1
container_start_page 107
container_title Journal of applied econometrics (Chichester, England)
container_volume 39
creator Lee, Sungwon
description Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.
doi_str_mv 10.1002/jae.3014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923517653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923517653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrysTj52s3sspX5R0IPiMaTJBFLaTU1SpP_eXevV0zDMM8PwEnLN4I4B8Pu1wTsBTJ6QCYOuqxiv61MygbYVleI1PycXOa8BoAFQE_L5ZlIJZkODw74EH6wpIfbU9I6G3mPC3iL1MVEbexfG2YBdyCWF1X5sM42eloSmbIcLFL1HW_IlOfNmk_Hqr07Jx8Piff5ULV8fn-ezZWWFlLJCD8yhV8iQr2rRdE45rzoH0imLvGvMSnrGTWusR5AgpRfCo2wRbKeGjSm5Od7dpfi1x1z0Ou7T8GPWvOOiZqqpxaBuj8qmmHNCr3cpbE06aAZ6jE0PsekxtoFWR_odNnj41-mX2eLX_wDIW2-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923517653</pqid></control><display><type>article</type><title>Partial identification and inference for conditional distributions of treatment effects</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lee, Sungwon</creator><creatorcontrib>Lee, Sungwon</creatorcontrib><description>Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.3014</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>conditional distribution ; Dominance ; Econometrics ; Endogenous ; heterogeneity ; Inference ; partial identification ; treatment effects ; uniform inference ; Usefulness</subject><ispartof>Journal of applied econometrics (Chichester, England), 2024-01, Vol.39 (1), p.107-127</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Lee, Sungwon</creatorcontrib><title>Partial identification and inference for conditional distributions of treatment effects</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</description><subject>conditional distribution</subject><subject>Dominance</subject><subject>Econometrics</subject><subject>Endogenous</subject><subject>heterogeneity</subject><subject>Inference</subject><subject>partial identification</subject><subject>treatment effects</subject><subject>uniform inference</subject><subject>Usefulness</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrysTj52s3sspX5R0IPiMaTJBFLaTU1SpP_eXevV0zDMM8PwEnLN4I4B8Pu1wTsBTJ6QCYOuqxiv61MygbYVleI1PycXOa8BoAFQE_L5ZlIJZkODw74EH6wpIfbU9I6G3mPC3iL1MVEbexfG2YBdyCWF1X5sM42eloSmbIcLFL1HW_IlOfNmk_Hqr07Jx8Piff5ULV8fn-ezZWWFlLJCD8yhV8iQr2rRdE45rzoH0imLvGvMSnrGTWusR5AgpRfCo2wRbKeGjSm5Od7dpfi1x1z0Ou7T8GPWvOOiZqqpxaBuj8qmmHNCr3cpbE06aAZ6jE0PsekxtoFWR_odNnj41-mX2eLX_wDIW2-0</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lee, Sungwon</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>202401</creationdate><title>Partial identification and inference for conditional distributions of treatment effects</title><author>Lee, Sungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>conditional distribution</topic><topic>Dominance</topic><topic>Econometrics</topic><topic>Endogenous</topic><topic>heterogeneity</topic><topic>Inference</topic><topic>partial identification</topic><topic>treatment effects</topic><topic>uniform inference</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungwon</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial identification and inference for conditional distributions of treatment effects</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>107</spage><epage>127</epage><pages>107-127</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary This paper considers identification and inference for the distribution of treatment effects conditional on observable covariates. Since the conditional distribution of treatment effects is not point identified without strong assumptions, we obtain bounds on the conditional distribution of treatment effects by using the Makarov bounds. We also consider the case where the treatment is endogenous and propose two stochastic dominance assumptions to tighten the bounds. We develop a nonparametric framework to estimate the bounds and establish the asymptotic theory that is uniformly valid over the support of treatment effects. An empirical example illustrates the usefulness of the methods.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.3014</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2024-01, Vol.39 (1), p.107-127
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2923517653
source International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection
subjects conditional distribution
Dominance
Econometrics
Endogenous
heterogeneity
Inference
partial identification
treatment effects
uniform inference
Usefulness
title Partial identification and inference for conditional distributions of treatment effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20identification%20and%20inference%20for%20conditional%20distributions%20of%20treatment%20effects&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Lee,%20Sungwon&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=107&rft.epage=127&rft.pages=107-127&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.3014&rft_dat=%3Cproquest_cross%3E2923517653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3444-ef01def7e1e2b5369d7df79d04d7ce296ab4f12a8acfe04044f33fe48e0c97b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923517653&rft_id=info:pmid/&rfr_iscdi=true