Loading…

The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study

A new reactive force field based on quantum mechanical data for describing formation of the Zn electrode‐electrolyte interface (EEI) chemistry in aqueous zinc‐ion batteries (ZIBs) is developed. This is the first demonstration in which Reactive Molecular Dynamics (RMD) simulation is used to follow th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-02, Vol.14 (6), p.n/a
Main Authors: Li, Yuyin, Musgrave, Charles B., Yang, Moon Young, Kim, Minho M., Zhang, Kenan, Tamtaji, Mohsen, Cai, Yuting, Tang, Tsz Wing, Wang, Jun, Yuan, Bin, Goddard, William A., Luo, Zhengtang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333
cites cdi_FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced energy materials
container_volume 14
creator Li, Yuyin
Musgrave, Charles B.
Yang, Moon Young
Kim, Minho M.
Zhang, Kenan
Tamtaji, Mohsen
Cai, Yuting
Tang, Tsz Wing
Wang, Jun
Yuan, Bin
Goddard, William A.
Luo, Zhengtang
description A new reactive force field based on quantum mechanical data for describing formation of the Zn electrode‐electrolyte interface (EEI) chemistry in aqueous zinc‐ion batteries (ZIBs) is developed. This is the first demonstration in which Reactive Molecular Dynamics (RMD) simulation is used to follow the Zn reduction and anode structural evolution at the EEI. It is found that under axial pressure, Zn dendrite formation is inhibited. This is associated with accelerated ion transport and reduction while increasing preference towards horizontal (002) plane growth. Pressure‐induced desolvation of Zn ions within the electric double layer, which promotes faster reduction kinetics is observed. It is found that axial pressure stabilizes adatoms on the (002) plane by decreasing axial atom stress during nucleation and by increasing favorable lateral adatom diffusion, which reduces atomic scale dendrite formation. Finally, these are confirmed results by experimental characterization and electrochemical tests. Zn electroplating process includes ions transportation, reduction, and nucleation. However, the competition among Zn2+ diffusion, reduction kinetics, and crystallographic thermodynamics, remains ambiguous. The powerful computational tool, Reactive Molecular Dynamics simulation, is used to describe the movement, reactions, and nucleation during dynamics at the atomic scale to gain a thorough understanding of the atomistic interface environment and the origin of Zn dendrite formation.
doi_str_mv 10.1002/aenm.202303047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923731419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923731419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEhV0ZbbEnOKvxg5bKOFDagGJTiyRk1zUVE0cbEe0_z0uRWXkljudfu_d6SF0RcmEEsJuNHTthBHGCSdCnqARjamIYiXI6XHm7ByNnVuTUCKhhPMR2i5XgD86fA-9cY1vTIcXUK5017gW667CbxacGyzgrK6h9A7XxuL0cwAzuL3wTnsPtgF3i1M8M23RdFDh4Gos-KbUmx-XbNsHqIXOh8W7H6rdJTqr9cbB-LdfoOVDtpw9RfPXx-dZOo9KLqmMEkZAKzWNpWJUSaF0IWtJq5hRYNOCc0mo1lwQUZBKVUUi1VTSuAahkpJzfoGuD7a9NeFp5_O1GWwXLuYsYVxyKmgSqMmBKq1xzkKd9-FbbXc5Jfk-33yfb37MNwiSg-Cr2cDuHzpPs5fFn_YbNA194A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923731419</pqid></control><display><type>article</type><title>The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Yuyin ; Musgrave, Charles B. ; Yang, Moon Young ; Kim, Minho M. ; Zhang, Kenan ; Tamtaji, Mohsen ; Cai, Yuting ; Tang, Tsz Wing ; Wang, Jun ; Yuan, Bin ; Goddard, William A. ; Luo, Zhengtang</creator><creatorcontrib>Li, Yuyin ; Musgrave, Charles B. ; Yang, Moon Young ; Kim, Minho M. ; Zhang, Kenan ; Tamtaji, Mohsen ; Cai, Yuting ; Tang, Tsz Wing ; Wang, Jun ; Yuan, Bin ; Goddard, William A. ; Luo, Zhengtang</creatorcontrib><description>A new reactive force field based on quantum mechanical data for describing formation of the Zn electrode‐electrolyte interface (EEI) chemistry in aqueous zinc‐ion batteries (ZIBs) is developed. This is the first demonstration in which Reactive Molecular Dynamics (RMD) simulation is used to follow the Zn reduction and anode structural evolution at the EEI. It is found that under axial pressure, Zn dendrite formation is inhibited. This is associated with accelerated ion transport and reduction while increasing preference towards horizontal (002) plane growth. Pressure‐induced desolvation of Zn ions within the electric double layer, which promotes faster reduction kinetics is observed. It is found that axial pressure stabilizes adatoms on the (002) plane by decreasing axial atom stress during nucleation and by increasing favorable lateral adatom diffusion, which reduces atomic scale dendrite formation. Finally, these are confirmed results by experimental characterization and electrochemical tests. Zn electroplating process includes ions transportation, reduction, and nucleation. However, the competition among Zn2+ diffusion, reduction kinetics, and crystallographic thermodynamics, remains ambiguous. The powerful computational tool, Reactive Molecular Dynamics simulation, is used to describe the movement, reactions, and nucleation during dynamics at the atomic scale to gain a thorough understanding of the atomistic interface environment and the origin of Zn dendrite formation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202303047</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adatoms ; Axial stress ; Electric double layer ; Electrochemical analysis ; electrode‐electrolyte interface ; Ion transport ; Molecular dynamics ; Nucleation ; pressure effect ; Pressure effects ; Quantum mechanics ; reactive molecular dynamics simulations ; Zn ions batteries</subject><ispartof>Advanced energy materials, 2024-02, Vol.14 (6), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333</citedby><cites>FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333</cites><orcidid>0000-0002-5134-9240 ; 0000-0003-0097-5716 ; 0000-0002-3432-0817 ; 0000-0001-9118-5474 ; 0000-0003-1343-6068 ; 0000-0002-3709-7606 ; 0000-0002-4021-6186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yuyin</creatorcontrib><creatorcontrib>Musgrave, Charles B.</creatorcontrib><creatorcontrib>Yang, Moon Young</creatorcontrib><creatorcontrib>Kim, Minho M.</creatorcontrib><creatorcontrib>Zhang, Kenan</creatorcontrib><creatorcontrib>Tamtaji, Mohsen</creatorcontrib><creatorcontrib>Cai, Yuting</creatorcontrib><creatorcontrib>Tang, Tsz Wing</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><title>The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study</title><title>Advanced energy materials</title><description>A new reactive force field based on quantum mechanical data for describing formation of the Zn electrode‐electrolyte interface (EEI) chemistry in aqueous zinc‐ion batteries (ZIBs) is developed. This is the first demonstration in which Reactive Molecular Dynamics (RMD) simulation is used to follow the Zn reduction and anode structural evolution at the EEI. It is found that under axial pressure, Zn dendrite formation is inhibited. This is associated with accelerated ion transport and reduction while increasing preference towards horizontal (002) plane growth. Pressure‐induced desolvation of Zn ions within the electric double layer, which promotes faster reduction kinetics is observed. It is found that axial pressure stabilizes adatoms on the (002) plane by decreasing axial atom stress during nucleation and by increasing favorable lateral adatom diffusion, which reduces atomic scale dendrite formation. Finally, these are confirmed results by experimental characterization and electrochemical tests. Zn electroplating process includes ions transportation, reduction, and nucleation. However, the competition among Zn2+ diffusion, reduction kinetics, and crystallographic thermodynamics, remains ambiguous. The powerful computational tool, Reactive Molecular Dynamics simulation, is used to describe the movement, reactions, and nucleation during dynamics at the atomic scale to gain a thorough understanding of the atomistic interface environment and the origin of Zn dendrite formation.</description><subject>Adatoms</subject><subject>Axial stress</subject><subject>Electric double layer</subject><subject>Electrochemical analysis</subject><subject>electrode‐electrolyte interface</subject><subject>Ion transport</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>pressure effect</subject><subject>Pressure effects</subject><subject>Quantum mechanics</subject><subject>reactive molecular dynamics simulations</subject><subject>Zn ions batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEhV0ZbbEnOKvxg5bKOFDagGJTiyRk1zUVE0cbEe0_z0uRWXkljudfu_d6SF0RcmEEsJuNHTthBHGCSdCnqARjamIYiXI6XHm7ByNnVuTUCKhhPMR2i5XgD86fA-9cY1vTIcXUK5017gW667CbxacGyzgrK6h9A7XxuL0cwAzuL3wTnsPtgF3i1M8M23RdFDh4Gos-KbUmx-XbNsHqIXOh8W7H6rdJTqr9cbB-LdfoOVDtpw9RfPXx-dZOo9KLqmMEkZAKzWNpWJUSaF0IWtJq5hRYNOCc0mo1lwQUZBKVUUi1VTSuAahkpJzfoGuD7a9NeFp5_O1GWwXLuYsYVxyKmgSqMmBKq1xzkKd9-FbbXc5Jfk-33yfb37MNwiSg-Cr2cDuHzpPs5fFn_YbNA194A</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Yuyin</creator><creator>Musgrave, Charles B.</creator><creator>Yang, Moon Young</creator><creator>Kim, Minho M.</creator><creator>Zhang, Kenan</creator><creator>Tamtaji, Mohsen</creator><creator>Cai, Yuting</creator><creator>Tang, Tsz Wing</creator><creator>Wang, Jun</creator><creator>Yuan, Bin</creator><creator>Goddard, William A.</creator><creator>Luo, Zhengtang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5134-9240</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid><orcidid>https://orcid.org/0000-0002-3432-0817</orcidid><orcidid>https://orcid.org/0000-0001-9118-5474</orcidid><orcidid>https://orcid.org/0000-0003-1343-6068</orcidid><orcidid>https://orcid.org/0000-0002-3709-7606</orcidid><orcidid>https://orcid.org/0000-0002-4021-6186</orcidid></search><sort><creationdate>20240201</creationdate><title>The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study</title><author>Li, Yuyin ; Musgrave, Charles B. ; Yang, Moon Young ; Kim, Minho M. ; Zhang, Kenan ; Tamtaji, Mohsen ; Cai, Yuting ; Tang, Tsz Wing ; Wang, Jun ; Yuan, Bin ; Goddard, William A. ; Luo, Zhengtang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adatoms</topic><topic>Axial stress</topic><topic>Electric double layer</topic><topic>Electrochemical analysis</topic><topic>electrode‐electrolyte interface</topic><topic>Ion transport</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>pressure effect</topic><topic>Pressure effects</topic><topic>Quantum mechanics</topic><topic>reactive molecular dynamics simulations</topic><topic>Zn ions batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuyin</creatorcontrib><creatorcontrib>Musgrave, Charles B.</creatorcontrib><creatorcontrib>Yang, Moon Young</creatorcontrib><creatorcontrib>Kim, Minho M.</creatorcontrib><creatorcontrib>Zhang, Kenan</creatorcontrib><creatorcontrib>Tamtaji, Mohsen</creatorcontrib><creatorcontrib>Cai, Yuting</creatorcontrib><creatorcontrib>Tang, Tsz Wing</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuyin</au><au>Musgrave, Charles B.</au><au>Yang, Moon Young</au><au>Kim, Minho M.</au><au>Zhang, Kenan</au><au>Tamtaji, Mohsen</au><au>Cai, Yuting</au><au>Tang, Tsz Wing</au><au>Wang, Jun</au><au>Yuan, Bin</au><au>Goddard, William A.</au><au>Luo, Zhengtang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study</atitle><jtitle>Advanced energy materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>A new reactive force field based on quantum mechanical data for describing formation of the Zn electrode‐electrolyte interface (EEI) chemistry in aqueous zinc‐ion batteries (ZIBs) is developed. This is the first demonstration in which Reactive Molecular Dynamics (RMD) simulation is used to follow the Zn reduction and anode structural evolution at the EEI. It is found that under axial pressure, Zn dendrite formation is inhibited. This is associated with accelerated ion transport and reduction while increasing preference towards horizontal (002) plane growth. Pressure‐induced desolvation of Zn ions within the electric double layer, which promotes faster reduction kinetics is observed. It is found that axial pressure stabilizes adatoms on the (002) plane by decreasing axial atom stress during nucleation and by increasing favorable lateral adatom diffusion, which reduces atomic scale dendrite formation. Finally, these are confirmed results by experimental characterization and electrochemical tests. Zn electroplating process includes ions transportation, reduction, and nucleation. However, the competition among Zn2+ diffusion, reduction kinetics, and crystallographic thermodynamics, remains ambiguous. The powerful computational tool, Reactive Molecular Dynamics simulation, is used to describe the movement, reactions, and nucleation during dynamics at the atomic scale to gain a thorough understanding of the atomistic interface environment and the origin of Zn dendrite formation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202303047</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5134-9240</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid><orcidid>https://orcid.org/0000-0002-3432-0817</orcidid><orcidid>https://orcid.org/0000-0001-9118-5474</orcidid><orcidid>https://orcid.org/0000-0003-1343-6068</orcidid><orcidid>https://orcid.org/0000-0002-3709-7606</orcidid><orcidid>https://orcid.org/0000-0002-4021-6186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-02, Vol.14 (6), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2923731419
source Wiley-Blackwell Read & Publish Collection
subjects Adatoms
Axial stress
Electric double layer
Electrochemical analysis
electrode‐electrolyte interface
Ion transport
Molecular dynamics
Nucleation
pressure effect
Pressure effects
Quantum mechanics
reactive molecular dynamics simulations
Zn ions batteries
title The Zn Deposition Mechanism and Pressure Effects for Aqueous Zn Batteries: A Combined Theoretical and Experimental Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Zn%20Deposition%20Mechanism%20and%20Pressure%20Effects%20for%20Aqueous%20Zn%20Batteries:%20A%20Combined%20Theoretical%20and%20Experimental%20Study&rft.jtitle=Advanced%20energy%20materials&rft.au=Li,%20Yuyin&rft.date=2024-02-01&rft.volume=14&rft.issue=6&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202303047&rft_dat=%3Cproquest_cross%3E2923731419%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3717-920ea885678218748ab7f71d621e25b33701aa3404b0d8db9785716fe489c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923731419&rft_id=info:pmid/&rfr_iscdi=true