Loading…

Multi-Convolutional Neural Network-Based Diagnostic Software for the Presumptive Determination of Non-Dermatophyte Molds

Based on the literature data, the incidence of superficial and invasive non-dermatophyte mold infection (NDMI) has increased. Many of these infections are undiagnosed or misdiagnosed, thus causing inadequate treatment procedures followed by critical conditions or even mortality of the patients. Accu...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-01, Vol.13 (3), p.594
Main Authors: Milanovic, Mina, Otasevic, Suzana, Randelovic, Marina, Grassi, Andrea, Cafarchia, Claudia, Mares, Mihai, Milosavljevic, Aleksandar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the literature data, the incidence of superficial and invasive non-dermatophyte mold infection (NDMI) has increased. Many of these infections are undiagnosed or misdiagnosed, thus causing inadequate treatment procedures followed by critical conditions or even mortality of the patients. Accurate diagnosis of these infections requires complex mycological analyses and operator skills, but simple, fast, and more efficient mycological tests are still required to overcome the limitations of conventional fungal diagnostic procedures. In this study, software has been developed to provide an efficient mycological diagnosis using a trained convolutional neural network (CNN) model as a core classifier. Using EfficientNet-B2 architecture and permanent slides of NDM isolated from patient’s materials (personal archive of Prof. Otašević, Department of Microbiology and Immunology, Medical Faculty, University of Niš, Serbia), a multi-CNN model has been trained and then integrated into the diagnostic tool, with a 93.73% accuracy of the main model. The Grad-CAM visualization model has been used for further validation of the pattern recognition of the model. The software, which makes the final diagnosis based on the rule of the major method, has been tested with images provided by different European laboratories, showing an almost faultless accuracy with different test images.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13030594