Loading…
Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients
In this work, we show the existence/uniqueness of L p -viscosity solutions for a fully non-linear obstacle problem with super-linear gradient growth, unbounded ingredients and irregular obstacles. In our results, we obtain Calderón–Zygmund estimates, namely W loc 2 , p regularity estimates (with p ∈...
Saved in:
Published in: | Mathematische Zeitschrift 2024-03, Vol.306 (3), Article 40 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-4c4a3cd49bf7d49a19ac8cca4b59cfa1c512b687d784a9f9d3ffde21b861a6793 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 306 |
creator | da Silva, João Vitor Frias, Romário Tomilhero |
description | In this work, we show the existence/uniqueness of
L
p
-viscosity solutions for a fully non-linear obstacle problem with super-linear gradient growth, unbounded ingredients and irregular obstacles. In our results, we obtain Calderón–Zygmund estimates, namely
W
loc
2
,
p
regularity estimates (with
p
∈
n
2
,
∞
) for such solution. Our findings are newsworthy even for the simplest model case:
Δ
u
+
b
(
x
)
·
D
u
+
μ
(
x
)
‖
D
u
‖
m
=
f
(
x
)
in
{
u
>
φ
}
∩
Ω
u
(
x
)
=
g
(
x
)
on
∂
Ω
,
where
f
∈
L
p
(
Ω
)
,
φ
∈
W
2
,
p
(
Ω
)
if
m
=
1
, and
φ
∈
W
2
,
2
p
(
Ω
)
if
m
∈
(
1
,
2
]
, for
b
∈
L
ϱ
(
Ω
)
and
μ
∈
L
q
(
Ω
)
with
ϱ
,
q
>
n
, thereby extending recent Calderón–Zygmund estimates for the fully nonlinear obstacle problem with unbounded drift terms and irregular obstacles. Finally, in the unconstrained linear setting (i.e., without restriction on obstacle and
m
=
1
), we obtain
W
loc
2
,
p
regularity estimates for the range of integrability
p
∈
(
p
0
,
n
]
. These estimates may be of independent mathematical interest and complement the Sobolev estimates recently addressed when
p
>
n
.. |
doi_str_mv | 10.1007/s00209-024-03444-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2923950210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923950210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4c4a3cd49bf7d49a19ac8cca4b59cfa1c512b687d784a9f9d3ffde21b861a6793</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Ab_bXZdoggIUiQaaGgsr3-SjXa9wfYKpaPgBhyFI3ATToJhkehoZop5783MB8ApwecE4_IiYkyxQJhyhBnnHBV7YEI4o4hUlO2DSZ4XqKhKfgiOYtxgnIcln4DXuWqNDR_v_vPl7XG36gZvoI2p6VSyEbo-wLS20A1tu4O-923jrQqwr2NSurVwG_q6tR18btIaxmFrA_qVLFTXtKn3jfIw2dBFqHL04Os-r7AGNn4VrGmsT_EYHDjVRnvy26fg4frqfr5Ay7ub2_nlEmla4oS45oppw0XtylwVEUpXWiteF0I7RXRBaD2rSlNWXAknDHPOWErqakbUrBRsCs7G3Hz105C_lJt-CD6vlFRQJgpMCc4qOqp06GMM1sltyDjCThIsv2nLkbbMtOUPbVlkExtNMYv9yoa_6H9cXxtUiBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923950210</pqid></control><display><type>article</type><title>Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients</title><source>Springer Link</source><creator>da Silva, João Vitor ; Frias, Romário Tomilhero</creator><creatorcontrib>da Silva, João Vitor ; Frias, Romário Tomilhero</creatorcontrib><description>In this work, we show the existence/uniqueness of
L
p
-viscosity solutions for a fully non-linear obstacle problem with super-linear gradient growth, unbounded ingredients and irregular obstacles. In our results, we obtain Calderón–Zygmund estimates, namely
W
loc
2
,
p
regularity estimates (with
p
∈
n
2
,
∞
) for such solution. Our findings are newsworthy even for the simplest model case:
Δ
u
+
b
(
x
)
·
D
u
+
μ
(
x
)
‖
D
u
‖
m
=
f
(
x
)
in
{
u
>
φ
}
∩
Ω
u
(
x
)
=
g
(
x
)
on
∂
Ω
,
where
f
∈
L
p
(
Ω
)
,
φ
∈
W
2
,
p
(
Ω
)
if
m
=
1
, and
φ
∈
W
2
,
2
p
(
Ω
)
if
m
∈
(
1
,
2
]
, for
b
∈
L
ϱ
(
Ω
)
and
μ
∈
L
q
(
Ω
)
with
ϱ
,
q
>
n
, thereby extending recent Calderón–Zygmund estimates for the fully nonlinear obstacle problem with unbounded drift terms and irregular obstacles. Finally, in the unconstrained linear setting (i.e., without restriction on obstacle and
m
=
1
), we obtain
W
loc
2
,
p
regularity estimates for the range of integrability
p
∈
(
p
0
,
n
]
. These estimates may be of independent mathematical interest and complement the Sobolev estimates recently addressed when
p
>
n
..</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03444-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Barriers ; Estimates ; Ingredients ; Integral calculus ; Mathematics ; Mathematics and Statistics ; Regularity</subject><ispartof>Mathematische Zeitschrift, 2024-03, Vol.306 (3), Article 40</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4c4a3cd49bf7d49a19ac8cca4b59cfa1c512b687d784a9f9d3ffde21b861a6793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>da Silva, João Vitor</creatorcontrib><creatorcontrib>Frias, Romário Tomilhero</creatorcontrib><title>Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>In this work, we show the existence/uniqueness of
L
p
-viscosity solutions for a fully non-linear obstacle problem with super-linear gradient growth, unbounded ingredients and irregular obstacles. In our results, we obtain Calderón–Zygmund estimates, namely
W
loc
2
,
p
regularity estimates (with
p
∈
n
2
,
∞
) for such solution. Our findings are newsworthy even for the simplest model case:
Δ
u
+
b
(
x
)
·
D
u
+
μ
(
x
)
‖
D
u
‖
m
=
f
(
x
)
in
{
u
>
φ
}
∩
Ω
u
(
x
)
=
g
(
x
)
on
∂
Ω
,
where
f
∈
L
p
(
Ω
)
,
φ
∈
W
2
,
p
(
Ω
)
if
m
=
1
, and
φ
∈
W
2
,
2
p
(
Ω
)
if
m
∈
(
1
,
2
]
, for
b
∈
L
ϱ
(
Ω
)
and
μ
∈
L
q
(
Ω
)
with
ϱ
,
q
>
n
, thereby extending recent Calderón–Zygmund estimates for the fully nonlinear obstacle problem with unbounded drift terms and irregular obstacles. Finally, in the unconstrained linear setting (i.e., without restriction on obstacle and
m
=
1
), we obtain
W
loc
2
,
p
regularity estimates for the range of integrability
p
∈
(
p
0
,
n
]
. These estimates may be of independent mathematical interest and complement the Sobolev estimates recently addressed when
p
>
n
..</description><subject>Barriers</subject><subject>Estimates</subject><subject>Ingredients</subject><subject>Integral calculus</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Ab_bXZdoggIUiQaaGgsr3-SjXa9wfYKpaPgBhyFI3ATToJhkehoZop5783MB8ApwecE4_IiYkyxQJhyhBnnHBV7YEI4o4hUlO2DSZ4XqKhKfgiOYtxgnIcln4DXuWqNDR_v_vPl7XG36gZvoI2p6VSyEbo-wLS20A1tu4O-923jrQqwr2NSurVwG_q6tR18btIaxmFrA_qVLFTXtKn3jfIw2dBFqHL04Os-r7AGNn4VrGmsT_EYHDjVRnvy26fg4frqfr5Ay7ub2_nlEmla4oS45oppw0XtylwVEUpXWiteF0I7RXRBaD2rSlNWXAknDHPOWErqakbUrBRsCs7G3Hz105C_lJt-CD6vlFRQJgpMCc4qOqp06GMM1sltyDjCThIsv2nLkbbMtOUPbVlkExtNMYv9yoa_6H9cXxtUiBg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>da Silva, João Vitor</creator><creator>Frias, Romário Tomilhero</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients</title><author>da Silva, João Vitor ; Frias, Romário Tomilhero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4c4a3cd49bf7d49a19ac8cca4b59cfa1c512b687d784a9f9d3ffde21b861a6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barriers</topic><topic>Estimates</topic><topic>Ingredients</topic><topic>Integral calculus</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, João Vitor</creatorcontrib><creatorcontrib>Frias, Romário Tomilhero</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, João Vitor</au><au>Frias, Romário Tomilhero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>306</volume><issue>3</issue><artnum>40</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>In this work, we show the existence/uniqueness of
L
p
-viscosity solutions for a fully non-linear obstacle problem with super-linear gradient growth, unbounded ingredients and irregular obstacles. In our results, we obtain Calderón–Zygmund estimates, namely
W
loc
2
,
p
regularity estimates (with
p
∈
n
2
,
∞
) for such solution. Our findings are newsworthy even for the simplest model case:
Δ
u
+
b
(
x
)
·
D
u
+
μ
(
x
)
‖
D
u
‖
m
=
f
(
x
)
in
{
u
>
φ
}
∩
Ω
u
(
x
)
=
g
(
x
)
on
∂
Ω
,
where
f
∈
L
p
(
Ω
)
,
φ
∈
W
2
,
p
(
Ω
)
if
m
=
1
, and
φ
∈
W
2
,
2
p
(
Ω
)
if
m
∈
(
1
,
2
]
, for
b
∈
L
ϱ
(
Ω
)
and
μ
∈
L
q
(
Ω
)
with
ϱ
,
q
>
n
, thereby extending recent Calderón–Zygmund estimates for the fully nonlinear obstacle problem with unbounded drift terms and irregular obstacles. Finally, in the unconstrained linear setting (i.e., without restriction on obstacle and
m
=
1
), we obtain
W
loc
2
,
p
regularity estimates for the range of integrability
p
∈
(
p
0
,
n
]
. These estimates may be of independent mathematical interest and complement the Sobolev estimates recently addressed when
p
>
n
..</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03444-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-03, Vol.306 (3), Article 40 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2923950210 |
source | Springer Link |
subjects | Barriers Estimates Ingredients Integral calculus Mathematics Mathematics and Statistics Regularity |
title | Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calder%C3%B3n%E2%80%93Zygmund%20estimates%20for%20the%20fully%20nonlinear%20obstacle%20problem%20with%20super-linear%20Hamiltonian%20terms%20and%20unbounded%20ingredients&rft.jtitle=Mathematische%20Zeitschrift&rft.au=da%20Silva,%20Jo%C3%A3o%20Vitor&rft.date=2024-03-01&rft.volume=306&rft.issue=3&rft.artnum=40&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03444-5&rft_dat=%3Cproquest_cross%3E2923950210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4c4a3cd49bf7d49a19ac8cca4b59cfa1c512b687d784a9f9d3ffde21b861a6793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923950210&rft_id=info:pmid/&rfr_iscdi=true |